This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018025 #21 Jun 18 2024 21:04:51 %S A018025 1,3,7,17,44,112,289,743,1911,4913,12633,32482,83521,214756,552198, %T A018025 1419857,3650852,9387369,24137569,62064487,159585272,410338673, %U A018025 1055096276,2712949630,6975757441,17936636689,46120143717,118587876497,304922823712,784042443182 %N A018025 Powers of cube root of 17 rounded to nearest integer. %H A018025 Vincenzo Librandi, <a href="/A018025/b018025.txt">Table of n, a(n) for n = 0..200</a> %t A018025 Table[Round[17^(n/3)], {n, 0, 40}] (* _Vincenzo Librandi_, Jan 08 2014 *) %o A018025 (PARI) a(n) = round((17^(1/3))^n); \\ _Michel Marcus_, Nov 23 2013 %o A018025 (Magma) [Round(17^(n/3)): n in [0..40]]; // _Vincenzo Librandi_, Jan 08 2014 %o A018025 (Python) %o A018025 from sympy import integer_nthroot %o A018025 def A018025(n): return -integer_nthroot(m:=17**n,3)[0]+integer_nthroot(m<<3,3)[0] # _Chai Wah Wu_, Jun 18 2024 %Y A018025 Cf. A010589, A018024, A018026, and powers of cube root of k rounded up: A017980 (k=2), A017983 (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), this sequence (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24). %K A018025 nonn %O A018025 0,2 %A A018025 _N. J. A. Sloane_ %E A018025 More terms from _Michel Marcus_, Nov 23 2013