This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018255 #66 Sep 26 2023 01:57:33 %S A018255 1,2,3,5,6,10,15,30 %N A018255 Divisors of 30. %C A018255 For n > 1, These are also numbers m such that k^4 + (k+1)^4 + ... + (k + m - 1)^4 is prime for some k and numbers m such that k^8 + (k+1)^8 + ... + (k + m - 1)^8 is prime for some k. - _Derek Orr_, Jun 12 2014 %C A018255 These seem to be the numbers m such that tau(n) = n*sigma(n) mod m for all n. See A098108 (mod 2), A126825 (mod 3), and A126832 (mod 5). - _Charles R Greathouse IV_, Mar 17 2022 %C A018255 The squarefree 5-smooth numbers: intersection of A051037 and A005117. - _Amiram Eldar_, Sep 26 2023 %D A018255 Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349. %H A018255 Edward Barbeau and Samer Seraj, <a href="http://arxiv.org/abs/1306.5257">Sum of Cubes is Square of Sum</a>, arXiv:1306.5257 [math.NT], 2013. %H A018255 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>. %F A018255 a(n) = A161715(n-1). - _Reinhard Zumkeller_, Jun 21 2009 %F A018255 Sum_{i=1..8} A000005(a(i))^3 = (Sum_{i=1..8} A000005(a(i)))^2, see Kordemsky in References and Barbeau et al. in Links section. - _Bruno Berselli_, Dec 28 2014 %e A018255 From the second comment: 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 8^3 = (1 + 2 + 2 + 2 + 4 + 4 + 4 + 8)^2 = 729. - _Bruno Berselli_, Dec 28 2014 %t A018255 Divisors[30] (* _Vladimir Joseph Stephan Orlovsky_, Dec 04 2010 *) %o A018255 (PARI) divisors(30) %o A018255 (Magma) Divisors(30); // _Bruno Berselli_, Dec 28 2014 %Y A018255 Cf. A000005, A005117, A051037, A158649, A161715. %Y A018255 Cf. A098108, A126825, A126832. %K A018255 nonn,fini,full,easy %O A018255 1,2 %A A018255 _N. J. A. Sloane_