This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018783 #30 Jan 20 2018 17:27:54 %S A018783 0,0,1,1,2,1,4,1,5,3,8,1,14,1,16,9,22,1,38,1,45,17,57,1,94,7,102,30, %T A018783 138,1,218,1,231,58,298,21,451,1,491,103,644,1,919,1,1005,203,1256,1, %U A018783 1784,15,1993,299,2439,1,3365,62,3735,492,4566,1,6252,1,6843,819,8349,107,11096 %N A018783 Number of partitions of n into parts having a common factor. %H A018783 Alois P. Heinz, <a href="/A018783/b018783.txt">Table of n, a(n) for n = 0..10000</a> %H A018783 L. Naughton, G. Pfeiffer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Naughton/naughton2.html">Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group</a>, J. Int. Seq. 16 (2013) #13.5.8 %F A018783 a(n) = -Sum_{d|n, d<n} moebius(n/d)*A000041(d) = A000041(n) - A000837(n). - _Vladeta Jovovic_, Jun 17 2003 %p A018783 with(numtheory): with(combinat): %p A018783 a:= n-> `if`(n=0, 0, %p A018783 numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))): %p A018783 seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 29 2011 %t A018783 A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* _Jean-François Alcover_, Oct 03 2013, after _Vladeta Jovovic_ *) %o A018783 (PARI) a(n) = - sumdiv(n, d, (d<n)*moebius(n/d)*numbpart(d)); \\ _Michel Marcus_, Oct 07 2017 %Y A018783 Cf. A000041, A000837, A083710. %K A018783 nonn %O A018783 0,5 %A A018783 _David W. Wilson_