cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018786 Numbers that are the sum of two 4th powers in more than one way.

This page as a plain text file.
%I A018786 #64 Feb 16 2025 08:32:33
%S A018786 635318657,3262811042,8657437697,10165098512,51460811217,52204976672,
%T A018786 68899596497,86409838577,138519003152,160961094577,162641576192,
%U A018786 264287694402,397074160625,701252453457,823372979472,835279626752
%N A018786 Numbers that are the sum of two 4th powers in more than one way.
%C A018786 Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - _M. F. Hasler_, Feb 21 2015
%D A018786 R. K. Guy, Unsolved Problems in Number Theory, D1.
%H A018786 Mia Muessig, <a href="/A018786/b018786.txt">Table of n, a(n) for n = 1..30000</a> (terms 1..111 from Vincenzo Librandi, terms 112..4359 from Sean A. Irvine)
%H A018786 J. Leech, <a href="http://dx.doi.org/10.1017/S0305004100032850">Some solutions of Diophantine equations</a>, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
%H A018786 Mia Muessig, <a href="https://github.com/PhoenixSmaug/taxicab-numbers">Julia code for finding general taxicab numbers</a>
%H A018786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%H A018786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine Equation.</a>
%F A018786 A weak lower bound: a(n) >> n^2. - _Charles R Greathouse IV_, Jul 12 2024
%e A018786 a(1) = 59^4 + 158^4 = 133^4 + 134^4.
%e A018786 a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
%t A018786 Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* _Jean-François Alcover_, Jul 26 2011 *)
%o A018786 (PARI) n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ _M. F. Hasler_, Feb 21 2015
%o A018786 (PARI) list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ _Charles R Greathouse IV_, Jul 12 2024
%Y A018786 Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).
%Y A018786 Cf. A001235, A003336, A003824, A309762.
%K A018786 nonn
%O A018786 1,1
%A A018786 _David W. Wilson_