This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018788 #39 May 14 2021 02:47:46 %S A018788 0,0,0,1,3,9,24,63,150,343,746,1605,3391,7075,14624,30076,61385, %T A018788 124758,252618,510161,1027632,2066304,4148715,8322113,16680369, %U A018788 33413592,66904484,133923906,268009597,536257466,1072861536,2146225299,4293173040,8587388627 %N A018788 Number of subsets of {1,...,n} containing an arithmetic progression of length 3. %H A018788 Fausto A. C. Cariboni, <a href="/A018788/b018788.txt">Table of n, a(n) for n = 0..80</a> (terms up to a(40) from Alois P. Heinz) %H A018788 Wikipedia, <a href="https://en.wikipedia.org/wiki/Salem-Spencer_set">Salem-Spencer set</a> %H A018788 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a> %F A018788 a(n) = 2^n - A051013(n). - _David Nacin_, Mar 03 2012 %e A018788 For n=4 the only subsets containing an arithmetic progression of length 3 are {1,2,3}, {2,3,4} and {1,2,3,4}. Thus a(4) = 3. - _David Nacin_, Mar 03 2012 %t A018788 a[n_] := a[n] = Count[Subsets[Range[n], {3, n}], {___, a_, ___, b_, ___, c_, ___} /; b-a == c-b]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 32}] (* _Jean-François Alcover_, May 30 2019 *) %o A018788 (Python) %o A018788 # Prints out all such sets %o A018788 from itertools import combinations as comb %o A018788 def containsap3(n): %o A018788 ap3list=list() %o A018788 for skip in range(1,(n+1)//2): %o A018788 for start in range (1,n+1-2*skip): %o A018788 ap3list.append(set({start,start+skip,start+2*skip})) %o A018788 s=list() %o A018788 for i in range(3,n+1): %o A018788 for temptuple in comb(range(1,n+1),i): %o A018788 tempset=set(temptuple) %o A018788 for sub in ap3list: %o A018788 if sub <= tempset: %o A018788 s.append(tempset) %o A018788 break %o A018788 return s # %o A018788 # Counts all such sets %o A018788 def a(n): %o A018788 return len(containsap3(n)) # _David Nacin_, Mar 03 2012 %Y A018788 Cf. A051013. %K A018788 nonn %O A018788 0,5 %A A018788 _David W. Wilson_ %E A018788 a(33) from _Alois P. Heinz_, Jan 31 2014