This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018789 #25 Mar 20 2023 14:12:09 %S A018789 0,0,0,0,1,3,8,25,64,148,356,826,1863,4205,9246,19865,42935,90872, %T A018789 190561,399104,829883,1710609,3523315,7224223,14755538,30092167, %U A018789 61177910,124028647,251168840,507216174,1022829206,2061466047,4149639752 %N A018789 Number of subsets of { 1, ..., n } containing an arithmetic progression of length 4. %H A018789 Sean A. Irvine, <a href="/A018789/b018789.txt">Table of n, a(n) for n = 0..39</a> %F A018789 a(n) = 2^n - A066369(n). %e A018789 In {1,2,3,4,5} the only length 4 progressions possible are 1,2,3,4 and 2,3,4,5. There are three sets containing one or more of these: {1,2,3,4},{2,3,4,5}, and {1,2,3,4,5}. Thus a(5) = 3. - _David Nacin_, Mar 05 2012 %o A018789 (Python) %o A018789 from itertools import combinations %o A018789 # Prints out all such sets %o A018789 def containsap4(n): %o A018789 ap4list = list() %o A018789 for skip in range(1, (n + 2) // 3): %o A018789 for start in range(1, n + 1 - 3 * skip): %o A018789 ap4list.append( %o A018789 set({start, start + skip, start + 2 * skip, start + 3 * skip}) %o A018789 ) %o A018789 s = list() %o A018789 for i in range(4, n + 1): %o A018789 for temptuple in combinations(range(1, n + 1), i): %o A018789 tempset = set(temptuple) %o A018789 for sub in ap4list: %o A018789 if sub <= tempset: %o A018789 s.append(tempset) %o A018789 break %o A018789 return s %o A018789 # Counts all such sets %o A018789 def a(n): %o A018789 return len(containsap4(n)) # _David Nacin_, Mar 05 2012 %o A018789 for n in range(20): %o A018789 print(a(n), end=", ") %Y A018789 Cf. A066369. %K A018789 nonn %O A018789 0,6 %A A018789 _David W. Wilson_