A018886 Waring's problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers.
1, 7, 23, 79, 223, 703, 2175, 6399, 19455, 58367, 176127, 528383, 1589247, 4767743, 14319615, 42991615, 129105919, 387186687, 1161822207, 3486515199, 10458497023, 31377588223, 94136958975, 282427654143, 847282962431, 2541815332863
Offset: 1
Examples
a(3) = 23 = 16 + 7 = 2*(2^3) + 7*(1^3) is a sum of 9 cubes; a(4) = 79 = 64 + 15 = 4*(2^4) + 15*(1^4) is a sum of 19 biquadrates.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 393.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- P. Pollack, Analytic and Combinatorial Number Theory Course Notes, exercise 7.1.1. p. 277.
- Eric Weisstein's World of Mathematics, Waring's Problem.
Programs
-
Maple
A018886 := proc(n) 2^n*floor((3/2)^n)-1 end proc: # R. J. Mathar, May 07 2015
-
Mathematica
a[n_]:=-1+2^n*Floor[(3/2)^n] a[Range[1,20]] (* Julien Kluge, Jul 21 2016 *)
-
Python
def a(n): return (3**n//2**n-1)*2**n + (2**n-1) print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Dec 17 2021
-
Python
def A018886(n): return (3**n&-(1<
Chai Wah Wu, Jun 25 2024
Formula
a(n) = 2^n*floor((3/2)^n) - 1 = 2^n*A002379(n) - 1.
Comments