cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018886 Waring's problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers.

Original entry on oeis.org

1, 7, 23, 79, 223, 703, 2175, 6399, 19455, 58367, 176127, 528383, 1589247, 4767743, 14319615, 42991615, 129105919, 387186687, 1161822207, 3486515199, 10458497023, 31377588223, 94136958975, 282427654143, 847282962431, 2541815332863
Offset: 1

Views

Author

Keywords

Comments

a(n) = (Q-1)*(2^n) + (2^n-1)*(1^n) is a sum of Q + 2^n - 2 terms, Q = trunc(3^n / 2^n).

Examples

			a(3) = 23 = 16 +  7 = 2*(2^3) +  7*(1^3) is a sum of 9 cubes;
a(4) = 79 = 64 + 15 = 4*(2^4) + 15*(1^4) is a sum of 19 biquadrates.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 393.

Crossrefs

Programs

  • Maple
    A018886 := proc(n)
    2^n*floor((3/2)^n)-1
    end proc: # R. J. Mathar, May 07 2015
  • Mathematica
    a[n_]:=-1+2^n*Floor[(3/2)^n]
    a[Range[1,20]] (* Julien Kluge, Jul 21 2016 *)
  • Python
    def a(n): return (3**n//2**n-1)*2**n + (2**n-1)
    print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Dec 17 2021
    
  • Python
    def A018886(n): return (3**n&-(1<Chai Wah Wu, Jun 25 2024

Formula

a(n) = 2^n*floor((3/2)^n) - 1 = 2^n*A002379(n) - 1.