This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018888 #46 Sep 19 2024 08:28:08 %S A018888 15,22,23,50,114,167,175,186,212,231,238,239,303,364,420,428,454 %N A018888 Numbers which are not the sum of seven nonnegative cubes. %C A018888 Old name: Write n = m_1^3 + ... +m_k^3 where the m_i are positive integers and k is minimal; sequence gives conjectured list of numbers for which k = 8 or 9. %C A018888 23 and 239 require 9 cubes and no numbers require > 9 cubes. %C A018888 Kadiri shows that a(n) < e^71000. - _Charles R Greathouse IV_, Dec 30 2014 %C A018888 Siksek shows that this sequence is complete. - _Charles R Greathouse IV_, May 05 2015 %D A018888 J. Roberts, Lure of the Integers, entry 239. %D A018888 F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431. %H A018888 Jan Bohman and Carl-Erik Froberg, <a href="http://dx.doi.org/10.1007/BF01934077">Numerical investigation of Waring's problem for cubes</a>, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122. %H A018888 Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, <a href="http://dx.doi.org/10.1090/S0025-5718-99-01116-3">7373170279850</a>, Math. Comp. 69 (2000), 421-439. %H A018888 N. D. Elkies, <a href="http://arxiv.org/abs/1009.3983">Every even number greater than 454 is the sum of seven cubes</a>, arXiv 1009.3983. %H A018888 H. Kadiri, <a href="http://www.cs.uleth.ca/~kadiri/articles/Prime-04-09-07.pdf">Short effective intervals containing primes in arithmetic progressions and the seven cubes problem</a>, Math. Comp. 77 (2008), pp. 1733-1748. %H A018888 K. S. McCurley, <a href="http://dx.doi.org/10.1016/0022-314X(84)90100-8">An effective seven-cube theorem</a>, J. Number Theory, 19 (1984), 176-183. %H A018888 Samir Siksek, <a href="http://arxiv.org/abs/1505.00647">Every integer greater than 454 is the sum of at most seven positive cubes</a>, arXiv:1505.00647 [math.NT], 2015. %H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a> %H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation3rdPowers.html">Diophantine Equation--3rd Powers</a> %H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a> %H A018888 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %e A018888 239 = 1^3 + 4(2^3) + 3(3^3) + 5^3 - requires 9 cubes. %p A018888 N:= 10000: %p A018888 C1:= {seq(i^3, i=0..floor(N^(1/3)))}: %p A018888 C2:= select(`<=`,{seq(seq(a+b,a=C1),b=C1)},N): %p A018888 C3:= select(`<=`,{seq(seq(a+b,a=C1),b=C2)},N): %p A018888 C5:= select(`<=`,{seq(seq(a+b,a=C2),b=C3)},N): %p A018888 C7:= select(`<=`,{seq(seq(a+b,a=C2),b=C5)},N): %p A018888 {$1..N} minus C7; # _Robert Israel_, Dec 30 2014 %t A018888 nn=10000; t=CoefficientList[Series[Sum[x^(k^3), {k,0,Floor[nn^(1/3)]}]^7, {x,0,nn}], x]; Flatten[Position[t,0]]-1 (* _T. D. Noe_, Sep 05 2006 *) %t A018888 Select[Range[500], PowersRepresentations[#, 7, 3] == {} &] (* _Eric W. Weisstein_, Sep 18 2024 *) %o A018888 (PARI) S=sum(n=0,7,x^n^3,O(x^455)); v=Vec(S^7);v=v[2..#v]; %o A018888 for(n=1,#v,if(v[n]==0,print1(n", "))) \\ _Charles R Greathouse IV_, May 05 2015 %Y A018888 Cf. A018889. %K A018888 fini,full,nonn %O A018888 1,1 %A A018888 _Jud McCranie_ %E A018888 Corrected by _T. D. Noe_, Sep 05 2006 %E A018888 Corrected the definition. - _N. J. A. Sloane_, Sep 25 2011 %E A018888 New name from _Charles R Greathouse IV_, Dec 30 2014