cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018888 Numbers which are not the sum of seven nonnegative cubes.

This page as a plain text file.
%I A018888 #46 Sep 19 2024 08:28:08
%S A018888 15,22,23,50,114,167,175,186,212,231,238,239,303,364,420,428,454
%N A018888 Numbers which are not the sum of seven nonnegative cubes.
%C A018888 Old name: Write n = m_1^3 + ... +m_k^3 where the m_i are positive integers and k is minimal; sequence gives conjectured list of numbers for which k = 8 or 9.
%C A018888 23 and 239 require 9 cubes and no numbers require > 9 cubes.
%C A018888 Kadiri shows that a(n) < e^71000. - _Charles R Greathouse IV_, Dec 30 2014
%C A018888 Siksek shows that this sequence is complete. - _Charles R Greathouse IV_, May 05 2015
%D A018888 J. Roberts, Lure of the Integers, entry 239.
%D A018888 F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.
%H A018888 Jan Bohman and Carl-Erik Froberg, <a href="http://dx.doi.org/10.1007/BF01934077">Numerical investigation of Waring's problem for cubes</a>, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
%H A018888 Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, <a href="http://dx.doi.org/10.1090/S0025-5718-99-01116-3">7373170279850</a>, Math. Comp. 69 (2000), 421-439.
%H A018888 N. D. Elkies, <a href="http://arxiv.org/abs/1009.3983">Every even number greater than 454 is the sum of seven cubes</a>, arXiv 1009.3983.
%H A018888 H. Kadiri, <a href="http://www.cs.uleth.ca/~kadiri/articles/Prime-04-09-07.pdf">Short effective intervals containing primes in arithmetic progressions and the seven cubes problem</a>, Math. Comp. 77 (2008), pp. 1733-1748.
%H A018888 K. S. McCurley, <a href="http://dx.doi.org/10.1016/0022-314X(84)90100-8">An effective seven-cube theorem</a>, J. Number Theory, 19 (1984), 176-183.
%H A018888 Samir Siksek, <a href="http://arxiv.org/abs/1505.00647">Every integer greater than 454 is the sum of at most seven positive cubes</a>, arXiv:1505.00647 [math.NT], 2015.
%H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>
%H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation3rdPowers.html">Diophantine Equation--3rd Powers</a>
%H A018888 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a>
%H A018888 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%e A018888 239 = 1^3 + 4(2^3) + 3(3^3) + 5^3 - requires 9 cubes.
%p A018888 N:= 10000:
%p A018888 C1:= {seq(i^3, i=0..floor(N^(1/3)))}:
%p A018888 C2:= select(`<=`,{seq(seq(a+b,a=C1),b=C1)},N):
%p A018888 C3:= select(`<=`,{seq(seq(a+b,a=C1),b=C2)},N):
%p A018888 C5:= select(`<=`,{seq(seq(a+b,a=C2),b=C3)},N):
%p A018888 C7:= select(`<=`,{seq(seq(a+b,a=C2),b=C5)},N):
%p A018888 {$1..N} minus C7; # _Robert Israel_, Dec 30 2014
%t A018888 nn=10000; t=CoefficientList[Series[Sum[x^(k^3), {k,0,Floor[nn^(1/3)]}]^7, {x,0,nn}], x]; Flatten[Position[t,0]]-1 (* _T. D. Noe_, Sep 05 2006 *)
%t A018888 Select[Range[500], PowersRepresentations[#, 7, 3] == {} &] (* _Eric W. Weisstein_, Sep 18 2024 *)
%o A018888 (PARI) S=sum(n=0,7,x^n^3,O(x^455)); v=Vec(S^7);v=v[2..#v];
%o A018888 for(n=1,#v,if(v[n]==0,print1(n", "))) \\ _Charles R Greathouse IV_, May 05 2015
%Y A018888 Cf. A018889.
%K A018888 fini,full,nonn
%O A018888 1,1
%A A018888 _Jud McCranie_
%E A018888 Corrected by _T. D. Noe_, Sep 05 2006
%E A018888 Corrected the definition. - _N. J. A. Sloane_, Sep 25 2011
%E A018888 New name from _Charles R Greathouse IV_, Dec 30 2014