A018901 Central hexanomial coefficients: largest coefficient of (1 + x + ... + x^5)^n.
1, 1, 6, 27, 146, 780, 4332, 24017, 135954, 767394, 4395456, 25090131, 144840476, 833196442, 4836766584, 27981391815, 163112472594, 947712321234, 5542414273884, 32312202610863, 189456975899496, 1107575676600876
Offset: 0
Keywords
Examples
Number of ways of getting most likely sum using n 6-sided dice (e.g., for n=2, 7 is the most prevalent sum and there are 6 different ways to get it: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Vaclav Kotesovec, Recurrence
- Index entries for sequences of k-nomial coefficients
Programs
-
Maple
sum((-1)^(k)*binomial(n,k)*binomial(n+floor(5*n/2)-6*k-1, n-1), k=0..floor(5*n/12)); # Warut Roonguthai, May 21 2006
-
Mathematica
Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,5}]^n],x^Floor[5*n/2]],{n,1,20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
Formula
a(n) ~ 6^n * sqrt(6/(35*Pi*n)). - Vaclav Kotesovec, Aug 09 2013
Comments