This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A018920 #24 Jul 13 2023 09:30:18 %S A018920 3,10,33,108,353,1153,3766,12300,40172,131202,428506,1399501,4570771, %T A018920 14928140,48755311,159234864,520061125,1698519827,5547366384, %U A018920 18117700664,59172417076,193257136076,631177877968,2061427183105,6732621943159,21988745758766 %N A018920 Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)). %H A018920 Colin Barker, <a href="/A018920/b018920.txt">Table of n, a(n) for n = 0..1000</a> %H A018920 D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. %H A018920 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A018920 a(n) = 3*a(n-1) + a(n-2) - a(n-4) - a(n-5) - a(n-6) (holds at least up to n = 1000 but is not known to hold in general). %p A018920 PisotT := proc(a0,a1,n) %p A018920 option remember; %p A018920 if n = 0 then %p A018920 a0 ; %p A018920 elif n = 1 then %p A018920 a1; %p A018920 else %p A018920 floor( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)) ; %p A018920 end if; %p A018920 end proc: %p A018920 A018920 := proc(n) %p A018920 PisotT(3,10,n) ; %p A018920 end proc: # _R. J. Mathar_, Feb 13 2016 %t A018920 RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 30}] (* _Bruno Berselli_, Feb 05 2016 *) %o A018920 (Magma) Txy:=[3,10]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..30]]; // _Bruno Berselli_, Feb 05 2016 %o A018920 (PARI) pisotT(nmax, a1, a2) = { %o A018920 a=vector(nmax); a[1]=a1; a[2]=a2; %o A018920 for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2])); %o A018920 a %o A018920 } %o A018920 pisotT(50, 3, 10) \\ _Colin Barker_, Jul 29 2016 %Y A018920 See A008776 for definitions of Pisot sequences. %K A018920 nonn %O A018920 0,1 %A A018920 _R. K. Guy_ %E A018920 Corrected by _David W. Wilson_