This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019277 #27 Jan 11 2020 15:32:04 %S A019277 1,2,4,5,7,15,16,17,78,97,101,120,174,214,239,261,263,296,380,557, %T A019277 1287,1524,1722,1911,2023,2373 %N A019277 Records in A019294, number of iterations of the sigma function to reach a multiple of the starting value. %C A019277 Original name: Let sigma_m(n) be the result of applying the sum-of-divisors function m times to n; let m(n) = min m such that n divides sigma_m (n); let k(n) = sigma_{m(n)}(n)/n; sequence gives k(n) for the megaperfect numbers n, where m(n) increases. %C A019277 Records in A019294. a(n>=23) depend on a few probable primes. %C A019277 See also the Cohen-te Riele links under A019276. %C A019277 The original name mentioned the sequence of ratios k, i.e., A019295(A019276) = (1, 2, 5, 24, 168, 1834560, 6516224, 881280, ...), at present not listed in the OEIS. - _M. F. Hasler_, Jan 07 2020 %H A019277 Graeme L. Cohen and Herman J. J. te Riele, <a href="http://projecteuclid.org/euclid.em/1047565640">Iterating the sum-of-divisors function</a>, Experimental Mathematics, 5 (1996), pp. 93-100. %F A019277 a(n) = A019294(A019276(n)). - _M. F. Hasler_, Jan 07 2020 %t A019277 f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[Mod[d, m] == 0, 0, d]]; g[n_] := Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1; a = 0; Do[b = g[n]; If[b > a, a = b; Print[ a]], {n, 460}] (* _Robert G. Wilson v_, Jun 24 2005 *) %o A019277 (PARI) {M=0; for(n=1,oo, my(s=n,m=1); while((s=sigma(s))%n,m++); m>M&&print1(M=m,","))} \\ _M. F. Hasler_, Jan 07 2020 %Y A019277 Cf. A019276 (megaperfect numbers: where A019294 has records), A019294 (min m: n|sigma^m(n)), A019295 (sigma^m(n)/n with m = A019294). %K A019277 hard,nonn %O A019277 1,2 %A A019277 _N. J. A. Sloane_ %E A019277 Definition corrected by _M. F. Hasler_, Jan 07 2020