A019318 Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same.
1, 2, 16, 252, 6814, 244344, 10746377, 553319048, 32611596056, 2163792255680, 159593799888052, 12952412056879996, 1147044793316531040, 110066314584030859544, 11375695977099383509351, 1259843950257390597789296, 148842380543159458506703546, 18685311541775061906510072648, 2483858381692984848273972297368, 348545122958862200122401771463328
Offset: 1
Examples
For n=3 the 16 solutions are 111 110 110 110 110 110 110 101 101 101 100 100 100 010 010 010 000 100 010 001 000 000 000 010 000 000 011 010 001 110 101 010 000 000 000 000 100 010 001 000 100 010 000 001 010 000 000 010
Links
- Mathieu Gouttenoire, Table of n, a(n) for n = 1..300
- Mario Velucchi, Different Dispositions in the ChessBoard.
- Mario Velucchi, Different Dispositions in the ChessBoard.
Programs
-
Mathematica
p[a_, b_, n_] := If[EvenQ[n], (a+b)^(n^2) + 2*(a+b)^n*(a^2 + b^2)^((n^2 - n)/2) + 3*(a^2 + b^2)^(n^2/2) + 2*(a^4 + b^4)^(n^2/4), (a+b)^(n^2) + 2*(a+b)*(a^4 + b^4)^((n^2-1)/4) + (a+b)*(a^2 + b^2)^((n^2-1)/2) + 4*(a+b)^n*(a^2 + b^2)^((n^2-n)/2)]; Table[Coefficient[p[a, 1, k], a, k]/8, {k, 1, 20}] (* Jean-François Alcover, Nov 12 2013, translated from Pari *)
-
PARI
{p(a,b,N) = if(N%2==0, (a+b)^(N^2) + 2*(a+b)^N*(a^2+b^2)^((N^2-N)/2) + 3*(a^2+b^2)^(N^2/2) + 2*(a^4+b^4)^(N^2/4), (a+b)^(N^2) + 2*(a+b)*(a^4+b^4)^((N^2-1)/4) + (a+b)*(a^2+b^2)^((N^2-1)/2) + 4*(a+b)^N*(a^2+b^2)^((N^2-N)/2))} for(k=1,20,print1(polcoeff(p(a,1,k),k)/8,","))
Formula
See Velucchi link or the PARI program. Note that the polynomial whose coefficient of a^k is divided by 8 differs based upon whether the term's index is even or odd.
Let A(n) = C(n^2, n); B(n) = C((n^2-(n mod 2))/2, n/2); C(n) = C((n^2-(n mod 2))/4, n/4); D(n) = Sum(p = 0 to [n/2], C((n^2-n)/2, p)*C(n, n-2p)). Then a(n) = (A(n) + 3B(n) + 2C(n) + 2D(n))/8 if n == 0 (mod 4), (A(n) + B(n) + 2C(n) + 4D(n))/8 if n == 1 (mod 4), (A(n) + 3B(n) + 2D(n))/8 if n == 2 (mod 4), (A(n) + B(n) + 4D(n))/8 if n == 3 (mod 4). - David W. Wilson, May 29 2003
Extensions
More terms from Rick L. Shepherd and David W. Wilson, May 28 2003
Comments