A019444 a_1, a_2, ..., is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.
1, 3, 2, 6, 8, 4, 11, 5, 14, 16, 7, 19, 21, 9, 24, 10, 27, 29, 12, 32, 13, 35, 37, 15, 40, 42, 17, 45, 18, 48, 50, 20, 53, 55, 22, 58, 23, 61, 63, 25, 66, 26, 69, 71, 28, 74, 76, 30, 79, 31, 82, 84, 33, 87, 34, 90, 92, 36, 95, 97, 38, 100, 39, 103, 105, 41, 108, 110, 43, 113
Offset: 1
References
- Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
- Éric Angelini, Franklin Adams-Watters, Max Alekseyev, A. E. Povolotsky, N. J. A. Sloane, and R. G. Wilson v, a(n) divides the sum of the first a(n) terms of T, Various postings to the old Sequence Fans Mailing List, assembled by _N. J. A. Sloane_, Dec 24 2024
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 18.
- Math Forum, Problem of the Week 818
- Jeffrey Shallit, Proving properties of some greedily-defined integer recurrences via automata theory, arXiv:2308.06544 [cs.DM], August 12 2023.
- A. Shapovalov, Problem M1517 (in Russian), Kvant 5 (1995), 20-21. English translation appeared in Quantum problem M185, Sept/October 1996 (beware, file is 75Mb).
- B. J. Venkatachala, A curious bijection on natural numbers, JIS 12 (2009) 09.8.1.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
a[1]=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v] lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *) Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *)
-
PARI
al(n)=local(v,s,fnd);v=vector(n);v[1]=s=1;for(k=2,n,fnd=0;for(i=1,k-1,if(v[i]==s,fnd=1;break));v[k]=if(fnd,s+k,s);s+=fnd);v \\ Franklin T. Adams-Watters, May 20 2010
-
PARI
A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#AM. F. Hasler, Nov 27 2019
Formula
a(n) = A002251(n-1) + 1. (Corrected by M. F. Hasler, Sep 17 2014)
Let s(n) = (1/n)*Sum_{k=1..n} a(k) = A019446(n). Then if s(n-1) does not occur in a(1),...,a(n-1), a(n) = s(n) = s(n-1); otherwise, a(n) = s(n-1) + n and s(n) = s(n-1) + 1. - Franklin T. Adams-Watters, May 20 2010
Lim_{n->infinity} max(n,a(n))/min(n,a(n)) = phi = A001622. - Stanislav Sykora, Jun 12 2017
Comments