A019465 Multiply by 1, add 1, multiply by 2, add 2, etc., start with 2.
2, 2, 3, 6, 8, 24, 27, 108, 112, 560, 565, 3390, 3396, 23772, 23779, 190232, 190240, 1712160, 1712169, 17121690, 17121700, 188338700, 188338711, 2260064532, 2260064544, 29380839072, 29380839085, 411331747190, 411331747204, 6169976208060, 6169976208075, 98719619329200
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..898
Crossrefs
Programs
-
Maple
A[0]:= 2: for n from 0 to 14 do A[2*n+1]:= (n+1)*A[2*n]; A[2*n+2]:= (n+1)+A[2*n+1]; od: seq(A[i],i=0..30); # Robert Israel, Dec 22 2015
-
Mathematica
a = {2}; Do[If[EvenQ@ Length@ a, AppendTo[a, Floor[Length[a]/2] Last@ a], AppendTo[a, Last@ a + Floor[Length[a] /2]]], {k, 27}]; Rest@ a (* Michael De Vlieger, Dec 22 2015 *)
-
PARI
A019465(n,a=2)={for(i=2,n+1,if(bittest(i,0),a+=i\2,a*=i\2));a} \\ M. F. Hasler, Feb 25 2018
Formula
From Robert Israel, Dec 22 2015: (Start)
a(2*k) = 2*k! + Sum_{j=0..k-1} k!/j! = 2*k! + k*e*Gamma(k,1).
a(2*k+1) = 2*(k+1)! + Sum_{j=0..k-1} (k+1)!/j! = 2*(k+1)! + k*(k+1)*e*Gamma(k,1).
a(n) ~ (e+2)*(ceiling(n/2))!. (End)
Extensions
Edited by M. F. Hasler, Feb 25 2018