This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019472 #31 Jun 27 2020 21:27:05 %S A019472 0,0,1,7,51,421,3963,42253,505515,6724381,98618763,1582715773, %T A019472 27612565995,520631327581,10554164679243,228975516609853, %U A019472 5294731892093355,130015079601039901,3379132289551117323,92679942218919579133,2675254894236207563115,81073734056332364441821 %N A019472 Weak preference orderings of n alternatives, i.e., orderings that have indifference between at least two alternatives. %C A019472 From _Gus Wiseman_, Jun 24 2020: (Start) %C A019472 Equivalently, a(n) is number of (1,1)-matching sequences of length n that cover an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 7 sequences are: %C A019472 (1,1) (1,1,1) %C A019472 (1,1,2) %C A019472 (1,2,1) %C A019472 (1,2,2) %C A019472 (2,1,1) %C A019472 (2,1,2) %C A019472 (2,2,1) %C A019472 Missing from this list are: %C A019472 (1,2) (1,2,3) %C A019472 (2,1) (1,3,2) %C A019472 (2,1,3) %C A019472 (2,3,1) %C A019472 (3,1,2) %C A019472 (3,2,1) %C A019472 (End) %H A019472 Wikipedia, <a href="https://en.wikipedia.org/wiki/Weak_ordering">Weak ordering</a> %H A019472 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %H A019472 Gus Wiseman, <a href="/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a> %F A019472 a(n) = A000670(n) - n!. - corrected by Eugene McDonnell, May 12 2000 %F A019472 a(n) = Sum_{j=0..n-1} Sum_{i=0..n-1} (-1)^(j-i)*C(j, i)*i^n. - _Peter Luschny_, Jul 22 2014 %t A019472 a[n_] := Sum[(-1)^(j-i)*Binomial[j, i]*i^n, {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Feb 26 2016, after _Peter Luschny_ *) %o A019472 (Sage) %o A019472 def A019472(n): %o A019472 return add(add((-1)^(j-i)*binomial(j, i)*i^n for i in range(n)) for j in range(n)) %o A019472 [A019472(n) for n in range(21)] # _Peter Luschny_, Jul 22 2014 %Y A019472 Cf. A000670, A052875. %Y A019472 (1,1)-avoiding patterns are counted by A000142. %Y A019472 (1,2)-matching patterns are counted by A056823. %Y A019472 (1,1)-matching compositions are counted by A261982. %Y A019472 (1,1)-matching compositions are ranked by A335488. %Y A019472 Patterns matched by patterns are counted by A335517. %Y A019472 Cf. A056986, A333217, A335454, A335456, A335515. %K A019472 nonn,easy,nice %O A019472 0,4 %A A019472 Robert Ware (bware(AT)wam.umd.edu)