This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019503 #51 May 26 2025 09:54:07 %S A019503 1,2,5,16,67,308,1493 %N A019503 Simplexity of the n-cube: minimal cardinality of triangulation of n-cube using n-simplices whose vertices are vertices of the n-cube. %C A019503 5522 <= a(8) <= 11944 [Haiman, Ziegler]. - _Jonathan Vos Post_, Jul 13 2005 %D A019503 H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, C9. %D A019503 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.9, p. 512. %D A019503 Warren D. Smith, Lower bounds for triangulations of the N-cube, manuscript, 1994. %D A019503 Gunter M. Ziegler, Lectures on Polytopes, Revised First Edn., Graduate Texts in Mathematics, Springer, 1994, p. 147. %H A019503 A. Glazyrin, <a href="https://doi.org/10.1016/j.disc.2012.09.002">Lower bounds for the simplexity of the n-cube</a>, Discrete Math. 312 (2012), no. 24, 3656--3662. MR2979495. - _N. J. A. Sloane_, Nov 07 2012 %H A019503 R. B. Hughes and M. R. Anderson, <a href="https://doi.org/10.1016/0012-365X(95)00075-8">Simplexity of the cube</a>, Discrete Mathematics, 158 (1996) 99-150, esp. p. 100. %H A019503 Mark Haiman, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN000364819">A simple and relatively efficient triangulation of the n-cube</a>, Discrete Comput. Geometry 6 (1991), 287-289. %H A019503 D. Orden and F. Santos, <a href="https://doi.org/10.1007/s00454-003-2845-5">Asymptotically efficient triangulations of the d-cube</a>, Discr. Comput. Geom. 30 (2003) 509, Table 1. %H A019503 Warren D. Smith, <a href="https://doi.org/10.1006/eujc.1999.0327">A lower bound for the simplexity of the n-cube via hyperbolic volumes, Combinatorics of polytopes</a>, European J. Combin. 21 (2000), no. 1, 131-137. MR1737333 (2001c:52004). %H A019503 Chuanming Zong, <a href="https://doi.org/10.1090/S0273-0979-05-01050-5">What is known about unit cubes</a>, Bull. Amer. Math. Soc., 42 (2005), 181-211. %Y A019503 Other sequences dealing with different ways to attack this problem. They give further references: A019502, A019504, A166932, A166932, A239912, A275518. %K A019503 nonn,hard,nice,more %O A019503 1,2 %A A019503 _N. J. A. Sloane_