This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019514 #14 Feb 16 2025 08:32:33 %S A019514 2,2,9,217,13825,1728001,373248001,128024064001,65548320768001, %T A019514 47784725839872001,47784725839872000001,63601470092869632000001, %U A019514 109903340320478724096000001,241457638684091756838912000001 %N A019514 a(n) = (n!)^3 + 1. %C A019514 Since this is a sum of two cubes, it can be factorized. So all terms are divisible by n!+1. Thus only two primes occur in this sequence: a(0) and a(1). - _Dmitry Kamenetsky_, Sep 30 2008 %D A019514 M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134. %D A019514 M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97. %D A019514 F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240. %H A019514 G. C. Greubel, <a href="/A019514/b019514.txt">Table of n, a(n) for n = 0..181</a> %H A019514 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/CP2.pdf">Collected Papers, Vol. II</a> %H A019514 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/Sequences-book.pdf">Sequences of Numbers Involved in Unsolved Problems</a>. %H A019514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Factorial.html">Factorial</a> %H A019514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmarandacheSequences.html">Smarandache Sequences</a> %t A019514 Table[(n!)^3 + 1, {n,0,25}] (* _G. C. Greubel_, Nov 30 2016 *) %K A019514 nonn,easy %O A019514 0,1 %A A019514 R. Muller