cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019537 Number of special orbits for dihedral group of degree n.

This page as a plain text file.
%I A019537 #24 Jul 21 2019 03:59:57
%S A019537 1,2,4,14,61,414,3416,34274,394009,5113712,73758368,1170495180,
%T A019537 20263806277,380048113202,7676106638884,166114210737254,
%U A019537 3834434327929981,94042629562443206,2442147034770292496,66942194906543381336,1931543452346146410965,58519191359170883258606
%N A019537 Number of special orbits for dihedral group of degree n.
%C A019537 a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - _Robert A. Russell_, May 31 2018
%H A019537 M. Goebel, <a href="http://www.informatik.uni-trier.de/~ley/db/journals/aaecc/aaecc8.html">On the number of special permutation-invariant orbits and terms</a>, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.)
%F A019537 a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - _Robert A. Russell_, May 31 2018
%F A019537 a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - _Vaclav Kotesovec_, Jul 21 2019
%e A019537 For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - _Robert A. Russell_, May 31 2018
%t A019537 Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2],k] + StirlingS2[Ceiling[(n+1)/2],k]), {k, 1, n}], {n, 1, 40}] (* _Robert A. Russell_, May 31 2018 *)
%o A019537 (PARI) a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2))); \\ _Michel Marcus_, Jun 06 2018
%Y A019537 Cf. A019536.
%Y A019537 Row sums of A273891.
%K A019537 nonn
%O A019537 1,2
%A A019537 Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)
%E A019537 More terms (using A273891) from _Alois P. Heinz_, Jun 02 2016