This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019537 #24 Jul 21 2019 03:59:57 %S A019537 1,2,4,14,61,414,3416,34274,394009,5113712,73758368,1170495180, %T A019537 20263806277,380048113202,7676106638884,166114210737254, %U A019537 3834434327929981,94042629562443206,2442147034770292496,66942194906543381336,1931543452346146410965,58519191359170883258606 %N A019537 Number of special orbits for dihedral group of degree n. %C A019537 a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - _Robert A. Russell_, May 31 2018 %H A019537 M. Goebel, <a href="http://www.informatik.uni-trier.de/~ley/db/journals/aaecc/aaecc8.html">On the number of special permutation-invariant orbits and terms</a>, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.) %F A019537 a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - _Robert A. Russell_, May 31 2018 %F A019537 a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - _Vaclav Kotesovec_, Jul 21 2019 %e A019537 For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - _Robert A. Russell_, May 31 2018 %t A019537 Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2],k] + StirlingS2[Ceiling[(n+1)/2],k]), {k, 1, n}], {n, 1, 40}] (* _Robert A. Russell_, May 31 2018 *) %o A019537 (PARI) a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2))); \\ _Michel Marcus_, Jun 06 2018 %Y A019537 Cf. A019536. %Y A019537 Row sums of A273891. %K A019537 nonn %O A019537 1,2 %A A019537 Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de) %E A019537 More terms (using A273891) from _Alois P. Heinz_, Jun 02 2016