cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019547 Squares which are a decimal concatenation of two or more squares.

Original entry on oeis.org

49, 100, 144, 169, 361, 400, 441, 900, 1225, 1369, 1444, 1600, 1681, 1936, 2500, 3249, 3600, 4225, 4900, 6400, 8100, 9025, 9409, 10000, 10404, 11025, 11449, 11664, 12100, 12544, 14161, 14400, 14641, 15625, 16641, 16900, 19044, 19600, 22500, 25600, 28900
Offset: 1

Views

Author

R. Muller

Keywords

Comments

0 counts as a square here.

Examples

			1369 is a term as it can be partitioned as 1, 36 and 9. 1444 is a term as it can be partitioned as 1, 4, 4, 4. Again, 100 is 1, 0, 0.
		

References

  • L. Widmer, Construction of Elements of the Smarandache Square-Partial-Digital Sequence, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 145-146.

Crossrefs

Programs

  • Mathematica
    r[n_, d_] := Catch@Block[{z = Length@d, t}, z < 1 || Do[If[IntegerQ@ Sqrt@ (t = FromDigits@Take[d, i]) && t < n && r[n, Take[d, i - z]], Throw@ True], {i, z}]]; Select[Range[4, 10^4]^2, r[#, IntegerDigits@ #] &] (* Giovanni Resta, Apr 30 2013 *)
  • Python
    from math import isqrt
    def issquare(n): return isqrt(n)**2 == n
    def ok(n, c):
        if n%10 in { 2, 3, 7, 8}: return False
        if issquare(n) and c > 1: return True
        d = str(n)
        for i in range(1, len(d)):
            if issquare(int(d[:i])) and ok(int(d[i:]), c+1): return True
        return False
    print([r*r for r in range(180) if ok(r*r, 1)]) # Michael S. Branicky, Jul 10 2021

Formula

n^2 < a(n) < 100n^2. - Charles R Greathouse IV, Sep 19 2012
a(n) = A128783(n)^2. - Michael S. Branicky, Jul 10 2021

Extensions

More terms from Christian N. K. Anderson, Apr 30 2013