A019547 Squares which are a decimal concatenation of two or more squares.
49, 100, 144, 169, 361, 400, 441, 900, 1225, 1369, 1444, 1600, 1681, 1936, 2500, 3249, 3600, 4225, 4900, 6400, 8100, 9025, 9409, 10000, 10404, 11025, 11449, 11664, 12100, 12544, 14161, 14400, 14641, 15625, 16641, 16900, 19044, 19600, 22500, 25600, 28900
Offset: 1
Examples
1369 is a term as it can be partitioned as 1, 36 and 9. 1444 is a term as it can be partitioned as 1, 4, 4, 4. Again, 100 is 1, 0, 0.
References
- L. Widmer, Construction of Elements of the Smarandache Square-Partial-Digital Sequence, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 145-146.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
- Christian N. K. Anderson, Table of n, a(n), sqrt(a(n)), all possible decompositions of a(n) into squares for n = 1..10000 (excluding solutions with leading zeros)
- Sylvester Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
Programs
-
Mathematica
r[n_, d_] := Catch@Block[{z = Length@d, t}, z < 1 || Do[If[IntegerQ@ Sqrt@ (t = FromDigits@Take[d, i]) && t < n && r[n, Take[d, i - z]], Throw@ True], {i, z}]]; Select[Range[4, 10^4]^2, r[#, IntegerDigits@ #] &] (* Giovanni Resta, Apr 30 2013 *)
-
Python
from math import isqrt def issquare(n): return isqrt(n)**2 == n def ok(n, c): if n%10 in { 2, 3, 7, 8}: return False if issquare(n) and c > 1: return True d = str(n) for i in range(1, len(d)): if issquare(int(d[:i])) and ok(int(d[i:]), c+1): return True return False print([r*r for r in range(180) if ok(r*r, 1)]) # Michael S. Branicky, Jul 10 2021
Formula
n^2 < a(n) < 100n^2. - Charles R Greathouse IV, Sep 19 2012
a(n) = A128783(n)^2. - Michael S. Branicky, Jul 10 2021
Extensions
More terms from Christian N. K. Anderson, Apr 30 2013
Comments