This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019728 #28 Oct 01 2022 00:27:51 %S A019728 8,3,5,5,4,2,7,5,8,2,1,0,3,3,3,5,0,0,8,0,5,2,5,5,0,9,4,9,3,7,0,1,5,0, %T A019728 8,4,3,3,5,6,6,2,2,4,6,8,6,9,9,7,9,4,3,8,8,7,6,6,4,1,1,9,2,1,1,4,0,9, %U A019728 7,8,8,4,8,6,9,2,8,0,6,5,8,3,1,5,5,3,1,9,4,6,1,2,6,0,1,9,0,8,8 %N A019728 Decimal expansion of sqrt(2*Pi)/3. %H A019728 G. C. Greubel, <a href="/A019728/b019728.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Ivan Panchenko) %H A019728 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A019728 Equals Integral_{x>=0} (sin(x)-x*cos(x))/x^(5/2) dx. - _Amiram Eldar_, May 08 2021 %e A019728 0.835542758210333500805255094937... %t A019728 RealDigits[Sqrt[2Pi]/3, 10, 99][[1]] (* _Indranil Ghosh_, May 02 2017 *) %o A019728 (PARI) sqrt(2*Pi)/3 \\ _G. C. Greubel_, Jul 27 2018 %o A019728 (Magma) R:= RealField(); Sqrt(2*Pi(R))/3; // _G. C. Greubel_, Jul 27 2018 %Y A019728 Cf. A019727. %K A019728 nonn,cons %O A019728 0,1 %A A019728 _N. J. A. Sloane_