cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019829 Decimal expansion of sine of 20 degrees.

Original entry on oeis.org

3, 4, 2, 0, 2, 0, 1, 4, 3, 3, 2, 5, 6, 6, 8, 7, 3, 3, 0, 4, 4, 0, 9, 9, 6, 1, 4, 6, 8, 2, 2, 5, 9, 5, 8, 0, 7, 6, 3, 0, 8, 3, 3, 6, 7, 5, 1, 4, 1, 6, 0, 6, 2, 8, 4, 6, 5, 0, 4, 8, 4, 9, 7, 6, 8, 4, 7, 1, 4, 7, 6, 3, 7, 0, 2, 0, 7, 7, 5, 9, 9, 5, 6, 4, 1, 9, 0, 1, 8, 2, 3, 3, 8, 5, 2, 5, 5, 4, 7
Offset: 0

Views

Author

Keywords

Examples

			0.34202014332566873304409961468225958076308336751416062846504849768471476...
		

Crossrefs

Cf. A323601.

Programs

  • Mathematica
    RealDigits[ Sin[Pi/9], 10, 111][[1]]  (* Robert G. Wilson v *)
  • PARI
    /* for x = 20 degrees, sin(9x) = 0 */
    /* so sin(x) is a zero of this polynomial */
    sin_9(x)=9*x-120*x^3+432*x^5-576*x^7+256*x^9
    x=34;y=100;print(3);print(4);
    for(digits=1, 110, {d=0;y=y*10;while(sin_9((10*x+d)/y) > 0, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=10*x+d})
    \\ Michael B. Porter, Jan 27 2010
    
  • PARI
    sin(Pi/9) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals cos(7*Pi/18) = 2F1(13/12,-1/12;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Root of the equation 64*x^6 - 96*x^4 + 36*x^2 - 3 = 0. - Vaclav Kotesovec, Jan 19 2019 (other A019849, A019889)
Equals sqrt(8 - 2^(4/3)*(1 + i*sqrt(3))^(2/3) + i*2^(2/3)*(1 + i*sqrt(3))^(1/3)*(i + sqrt(3)))/4, where i is the imaginary unit. - Vaclav Kotesovec, Jan 19 2019
Equals 2*A019819 *A019889. - R. J. Mathar, Jan 17 2021
This^2 + A019879^2=1. - R. J. Mathar, Aug 31 2025