This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019942 #14 Sep 08 2022 08:44:44 %S A019942 9,6,5,6,8,8,7,7,4,8,0,7,0,7,4,0,4,5,9,5,8,0,2,7,2,9,9,7,0,0,6,8,1,3, %T A019942 9,3,2,1,1,5,8,9,8,1,7,0,8,3,1,0,9,4,6,2,4,4,1,1,6,1,9,0,7,3,8,9,5,7, %U A019942 9,8,4,2,4,9,5,6,3,8,0,0,1,1,5,9,8,7,2,6,6,3,1,0,9,5,3,0,6,1,7 %N A019942 Decimal expansion of tangent of 44 degrees. %C A019942 Also the decimal expansion of cotangent of 46 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019942 Ivan Panchenko, <a href="/A019942/b019942.txt">Table of n, a(n) for n = 0..1000</a> %e A019942 0.9656887748070740459580272997006813932115898170831094624411619... %t A019942 RealDigits[Tan[44 Degree],10,120][[1]] (* _Harvey P. Dale_, Apr 11 2012 *) %t A019942 RealDigits[Tan[11*Pi/45], 10, 100][[1]] (* _G. C. Greubel_, Nov 24 2018 *) %o A019942 (PARI) default(realprecision, 100); tan(11*Pi/45) \\ _G. C. Greubel_, Nov 24 2018 %o A019942 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(11*Pi(R)/45); // _G. C. Greubel_, Nov 24 2018 %o A019942 (Sage) numerical_approx(tan(11*pi/45), digits=100) # _G. C. Greubel_, Nov 24 2018 %Y A019942 Cf. A019853 (sine of 44 degrees). %K A019942 nonn,cons %O A019942 0,1 %A A019942 _N. J. A. Sloane_