This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019944 #13 Sep 08 2022 08:44:44 %S A019944 1,0,3,5,5,3,0,3,1,3,7,9,0,5,6,9,5,0,6,9,5,8,8,3,2,5,5,1,2,4,8,1,3,2, %T A019944 0,2,4,9,6,9,9,3,8,4,1,2,6,5,2,3,3,9,9,6,3,4,5,1,1,0,2,0,7,3,7,7,0,2, %U A019944 8,4,9,1,0,8,6,9,7,5,5,9,9,8,5,9,0,9,0,1,7,0,2,4,9,9,6,5,0,0,7 %N A019944 Decimal expansion of tangent of 46 degrees. %C A019944 Also the decimal expansion of cotangent of 44 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019944 Ivan Panchenko, <a href="/A019944/b019944.txt">Table of n, a(n) for n = 1..1000</a> %e A019944 1.0355303137905695069588325512481320249699384126523399634511... %t A019944 RealDigits[Tan[23*Pi/90], 10, 100][[1]] (* _G. C. Greubel_, Nov 24 2018 *) %t A019944 RealDigits[Tan[46 Degree],10,120][[1]] (* _Harvey P. Dale_, Jan 15 2022 *) %o A019944 (PARI) default(realprecision, 100); tan(23*Pi/90) \\ _G. C. Greubel_, Nov 24 2018 %o A019944 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(23*Pi(R)/90); // _G. C. Greubel_, Nov 24 2018 %o A019944 (Sage) numerical_approx(tan(23*pi/90), digits=100) # _G. C. Greubel_, Nov 24 2018 %Y A019944 Cf. A019855 (sine of 46 degrees). %K A019944 nonn,cons %O A019944 1,3 %A A019944 _N. J. A. Sloane_