This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019947 #13 Sep 08 2022 08:44:44 %S A019947 1,1,5,0,3,6,8,4,0,7,2,2,1,0,0,9,5,5,5,8,7,6,3,3,1,0,2,5,5,6,9,5,7,0, %T A019947 3,6,2,0,1,4,4,6,5,0,4,8,1,3,1,9,9,9,5,8,9,6,2,6,4,5,2,6,8,7,8,2,2,4, %U A019947 5,1,5,9,1,3,8,7,5,1,5,0,9,1,7,3,1,2,3,1,6,5,7,8,7,9,8,3,8,9,5 %N A019947 Decimal expansion of tangent of 49 degrees. %C A019947 Also the decimal expansion of cotangent of 41 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019947 Ivan Panchenko, <a href="/A019947/b019947.txt">Table of n, a(n) for n = 1..1000</a> %e A019947 1.15036840722100955587633102556957036201446504813199958962645... %t A019947 RealDigits[Tan[49 Degree],10,120][[1]] (* _Harvey P. Dale_, Apr 18 2013 *) %t A019947 RealDigits[Tan[49*Pi/180], 10, 100][[1]] (* _G. C. Greubel_, Nov 24 2018 *) %o A019947 (PARI) default(realprecision, 100); tan(49*Pi/180) \\ _G. C. Greubel_, Nov 24 2018 %o A019947 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(49*Pi(R)/180); // _G. C. Greubel_, Nov 24 2018 %o A019947 (Sage) numerical_approx(tan(49*pi/180), digits=100) # _G. C. Greubel_, Nov 24 2018 %Y A019947 Cf. A019858 (sine of 49 degrees). %K A019947 nonn,cons %O A019947 1,3 %A A019947 _N. J. A. Sloane_