This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019950 #12 Sep 08 2022 08:44:44 %S A019950 1,2,7,9,9,4,1,6,3,2,1,9,3,0,7,8,7,8,0,3,1,1,0,2,9,8,4,7,5,7,1,9,9,1, %T A019950 1,9,2,1,2,3,1,5,1,8,8,5,2,7,0,4,5,9,3,8,0,7,0,0,2,9,1,0,9,6,1,4,0,4, %U A019950 2,2,0,1,5,7,8,2,3,3,6,3,3,9,2,8,5,8,4,2,0,4,3,8,9,2,4,4,1,2,6 %N A019950 Decimal expansion of tangent of 52 degrees. %C A019950 Also the decimal expansion of cotangent of 38 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019950 Ivan Panchenko, <a href="/A019950/b019950.txt">Table of n, a(n) for n = 1..1000</a> %e A019950 1.279941632193078780311029847571991192123151885270459380700291... %t A019950 RealDigits[Tan[13*Pi/45], 10, 100][[1]] (* _G. C. Greubel_, Nov 23 2018 *) %o A019950 (PARI) default(realprecision, 100); tan(13*Pi/45) \\ _G. C. Greubel_, Nov 23 2018 %o A019950 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(13*Pi(R)/45); // _G. C. Greubel_, Nov 23 2018 %o A019950 (Sage) numerical_approx(tan(13*pi/45), digits=100) # _G. C. Greubel_, Nov 23 2018 %Y A019950 Cf. A019861 (sine of 52 degrees). %K A019950 nonn,cons %O A019950 1,2 %A A019950 _N. J. A. Sloane_