This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019951 #12 Sep 08 2022 08:44:44 %S A019951 1,3,2,7,0,4,4,8,2,1,6,2,0,4,1,0,0,3,7,1,5,9,4,7,2,5,7,4,0,8,6,9,3,2, %T A019951 4,1,9,9,0,6,0,4,1,2,9,5,5,8,7,6,2,3,0,1,6,2,0,7,7,3,5,6,8,2,5,1,5,9, %U A019951 1,6,3,4,0,3,0,2,6,0,2,8,9,8,6,9,2,4,9,6,3,3,6,7,6,5,4,3,1,2,3 %N A019951 Decimal expansion of tangent of 53 degrees. %C A019951 Also the decimal expansion of cotangent of 37 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019951 Ivan Panchenko, <a href="/A019951/b019951.txt">Table of n, a(n) for n = 1..1000</a> %e A019951 1.3270448216204100371594725740869324199060412955876230162... %t A019951 RealDigits[Tan[53*Pi/180], 10, 100][[1]] (* _G. C. Greubel_, Nov 22 2018 *) %o A019951 (PARI) default(realprecision, 100); tan(53*Pi/180) \\ _G. C. Greubel_, Nov 22 2018 %o A019951 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(53*Pi(R)/180); // _G. C. Greubel_, Nov 22 2018 %o A019951 (Sage) numerical_approx(tan(53*pi/180), digits=100) # _G. C. Greubel_, Nov 22 2018 %Y A019951 Cf. A019862 (sine of 53 degrees). %K A019951 nonn,cons %O A019951 1,2 %A A019951 _N. J. A. Sloane_