This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019957 #13 Sep 08 2022 08:44:44 %S A019957 1,6,6,4,2,7,9,4,8,2,3,5,0,5,1,7,9,1,1,0,3,0,4,9,6,1,7,0,0,3,4,7,8,2, %T A019957 4,2,3,7,6,9,4,8,3,8,6,1,1,0,8,5,5,4,8,9,2,9,4,1,0,5,4,5,4,5,6,2,4,4, %U A019957 4,1,6,7,2,1,6,8,4,7,3,0,6,6,4,2,9,1,4,0,4,0,2,2,8,1,6,7,3,5,9 %N A019957 Decimal expansion of tangent of 59 degrees. %C A019957 Also the decimal expansion of cotangent of 31 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019957 Ivan Panchenko, <a href="/A019957/b019957.txt">Table of n, a(n) for n = 1..1000</a> %e A019957 1.664279482350517911030496170034782423769483861108554892941... %t A019957 RealDigits[Tan[59 Degree],10,120][[1]] (* _Harvey P. Dale_, Aug 17 2012 *) %t A019957 RealDigits[Tan[59*Pi/180], 10, 100][[1]] (* _G. C. Greubel_, Nov 22 2018 *) %o A019957 (PARI) default(realprecision, 100); tan(59*Pi/180) \\ _G. C. Greubel_, Nov 22 2018 %o A019957 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(59*Pi(R)/180); // _G. C. Greubel_, Nov 22 2018 %o A019957 (Sage) numerical_approx(tan(59*pi/180), digits=100) # _G. C. Greubel_, Nov 22 2018 %Y A019957 Cf. A019868 (sine of 59 degrees). %K A019957 nonn,cons %O A019957 1,2 %A A019957 _N. J. A. Sloane_