This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019960 #13 Sep 08 2022 08:44:44 %S A019960 1,8,8,0,7,2,6,4,6,5,3,4,6,3,3,2,0,1,2,3,6,0,8,3,7,5,9,5,8,2,9,2,7,7, %T A019960 9,5,5,3,7,5,6,3,7,4,9,7,7,7,5,2,0,4,5,4,6,5,4,2,5,1,4,8,5,1,0,8,4,8, %U A019960 3,8,9,2,6,4,1,0,8,2,2,3,7,7,8,8,6,5,7,7,1,4,3,9,5,3,2,9,5,0,1 %N A019960 Decimal expansion of tangent of 62 degrees. %C A019960 Also the decimal expansion of cotangent of 28 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019960 Ivan Panchenko, <a href="/A019960/b019960.txt">Table of n, a(n) for n = 1..1000</a> %e A019960 1.880726465346332012360837595829277955375637497775204546542514851... %t A019960 RealDigits[Tan[62 Degree],10,120][[1]] (* _Harvey P. Dale_, Aug 20 2017 *) %t A019960 RealDigits[Tan[31*Pi/90], 10, 100][[1]] (* _G. C. Greubel_, Nov 22 2018 *) %o A019960 (PARI) default(realprecision, 100); tan(31*Pi/90) \\ _G. C. Greubel_, Nov 22 2018 %o A019960 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(31*Pi(R)/90); // _G. C. Greubel_, Nov 22 2018 %o A019960 (Sage) numerical_approx(tan(31*pi/90), digits=100) # _G. C. Greubel_, Nov 22 2018 %Y A019960 Cf. A019871 (sine of 62 degrees). %K A019960 nonn,cons %O A019960 1,2 %A A019960 _N. J. A. Sloane_