This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019962 #16 Sep 08 2022 08:44:44 %S A019962 2,0,5,0,3,0,3,8,4,1,5,7,9,2,9,6,2,1,6,8,9,9,0,1,1,0,7,0,5,4,1,4,9,4, %T A019962 1,4,6,7,6,7,5,1,9,6,2,2,7,4,3,2,4,2,4,2,3,4,7,2,6,6,6,0,9,6,7,8,5,4, %U A019962 8,1,1,4,4,7,7,0,6,5,7,7,4,2,9,4,9,7,7,0,8,8,6,9,4,2,9,1,6,8,1 %N A019962 Decimal expansion of tangent of 64 degrees. %C A019962 Also the decimal expansion of cotangent of 26 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019962 Ivan Panchenko, <a href="/A019962/b019962.txt">Table of n, a(n) for n = 1..1000</a> %e A019962 2.050303841579296216899011070541494146767519622743242423472666... %t A019962 RealDigits[Tan[16*Pi/45], 10, 100][[1]] (* _G. C. Greubel_, Nov 21 2018 *) %t A019962 RealDigits[Tan[64 Degree],10,120][[1]] (* _Harvey P. Dale_, Dec 29 2019 *) %o A019962 (PARI) default(realprecision, 100); tan(16*Pi/45) \\ _G. C. Greubel_, Nov 21 2018 %o A019962 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(16*Pi(R)/45); // _G. C. Greubel_, Nov 21 2018 %o A019962 (Sage) numerical_approx(tan(16*pi/45), digits=100) # _G. C. Greubel_, Nov 21 2018 %Y A019962 Cf. A019874 (sine of 64 degrees). %K A019962 nonn,cons %O A019962 1,1 %A A019962 _N. J. A. Sloane_