This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019971 #18 Sep 08 2022 08:44:44 %S A019971 3,2,7,0,8,5,2,6,1,8,4,8,4,1,4,0,8,6,5,3,0,8,8,5,6,2,5,7,3,0,5,4,1,0, %T A019971 7,7,7,1,0,5,9,4,2,6,8,4,3,1,8,8,1,0,7,0,3,6,4,0,0,8,8,0,3,4,8,2,3,6, %U A019971 6,1,1,6,1,0,0,9,2,6,7,9,9,4,3,4,1,5,8,5,5,4,2,5,1,2,0,4,8,2,0 %N A019971 Decimal expansion of tangent of 73 degrees. %C A019971 Also the decimal expansion of cotangent of 17 degrees. - _Ivan Panchenko_, Sep 01 2014 %H A019971 Ivan Panchenko, <a href="/A019971/b019971.txt">Table of n, a(n) for n = 1..1000</a> %e A019971 3.27085261848414086530885625730541077710594268431881... %t A019971 RealDigits[Tan[73*Pi/180], 10, 100][[1]] (* _G. C. Greubel_, Nov 20 2018 *) %o A019971 (PARI) default(realprecision, 100); tan(73*Pi/180) \\ _G. C. Greubel_, Nov 20 2018 %o A019971 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(73*Pi(R)/180); // _G. C. Greubel_, Nov 20 2018 %o A019971 (Sage) numerical_approx(tan(73*pi/180), digits=100) # _G. C. Greubel_, Nov 20 2018 %Y A019971 Cf. A019882. %K A019971 nonn,cons %O A019971 1,1 %A A019971 _N. J. A. Sloane_