This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A019988 #68 Feb 16 2025 08:32:33 %S A019988 1,2,5,16,55,222,950,4265,19591,91678,434005,2073783,9979772,48315186, %T A019988 235088794,1148891118,5636168859,27743309673 %N A019988 Number of ways of embedding a connected graph with n edges in the square lattice. %C A019988 It is assumed that all edges have length one. - _N. J. A. Sloane_, Apr 17 2019 %C A019988 These are referred to as 'polysticks', 'polyedges' or 'polyforms'. - _Jack W Grahl_, Jul 24 2018 %C A019988 Number of connected subgraphs of the square lattice (or grid) containing n length-one line segments. Configurations differing only a rotation or reflection are not counted as different. The question may also be stated in terms of placing unit toothpicks in a connected arrangement on the square lattice. - _N. J. A. Sloane_, Apr 17 2019 %C A019988 The solution for n=5 features in the card game Digit. - Paweł Rafał Bieliński, Apr 17 2019 %D A019988 Brian R. Barwell, "Polysticks," Journal of Recreational Mathematics, 22 (1990), 165-175. %H A019988 D. Goodger, <a href="http://puzzler.sourceforge.net/docs/polysticks-intro.html">An introduction to Polysticks</a> %H A019988 M. Keller, <a href="http://www.solitairelaboratory.com/polyenum.html">Counting polyforms</a> %H A019988 D. Knuth, <a href="https://arxiv.org/abs/cs/0011047">Dancing Links</a>, arXiv:cs/0011047 [cs.DS], 2000. (A discussion of backtracking algorithms which mentions some problems of polystick tiling.) %H A019988 Ed Pegg, Jr., <a href="http://demonstrations.wolfram.com/PolyformExplorer/">Illustrations of polyforms</a> %H A019988 N. J. A. Sloane, <a href="/A019988/a019988.png">Illustration of a(1)-a(4)</a> %H A019988 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Polyedge.html">Polyedge</a> %H A019988 Wikicommons, <a href="https://commons.wikimedia.org/wiki/File:Polysticks.svg">Polysticks</a> <a href="https://commons.wikimedia.org/wiki/File:Free_connected_5-sticks_square_lattice.svg">5-sticks</a> <a href="https://commons.wikimedia.org/wiki/File:Free_connected_6-sticks_square_lattice.svg">6-sticks</a> <a href="https://commons.wikimedia.org/wiki/File:Free_connected_7-sticks_square_lattice.svg">7-sticks</a> %F A019988 A348095(n) + A056841(n+1) = a(n). - _R. J. Mathar_, Sep 30 2021 %Y A019988 If only translations (but not rotations) are factored, consider fixed polyedges (A096267). %Y A019988 If reflections are considered different, we obtain the one-sided polysticks, counted by (A151537). - _Jack W Grahl_, Jul 24 2018 %Y A019988 Cf. A001997, A003792, A006372, A059103, A085632, A056841 (tree-like), A348095 (with cycles), A348096 (refined by symmetry), A181528. %Y A019988 See A336281 for another version. %Y A019988 6th row of A366766. %K A019988 nonn,nice,hard,more %O A019988 1,2 %A A019988 _Russ Cox_ %E A019988 More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Feb 20 2002 %E A019988 a(18) from _John Mason_, Jun 01 2023