This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020004 #20 Sep 08 2022 08:44:44 %S A020004 1,0,0,0,1,2,12,73,519,4193,38084,384010,4256112,51428023,672849973, %T A020004 9475970455,142929221024,2298778304796,39270796040273,710146895061598, %U A020004 13551969914092152,272168729108017393,5738224038694033364 %N A020004 Nearest integer to Gamma(n + 1/12)/Gamma(1/12). %H A020004 G. C. Greubel, <a href="/A020004/b020004.txt">Table of n, a(n) for n = 0..445</a> %e A020004 Gamma(0 + 1/12)/Gamma(1/12) = 1, so a(0) = 1. %e A020004 Gamma(1 + 1/12)/Gamma(1/12) = 1/12 = 0.08333..., so a(1) = 0. %e A020004 Gamma(2 + 1/12)/Gamma(1/12) = 13/144 < 1/2, so a(2) = 0. %e A020004 Gamma(3 + 1/12)/Gamma(1/12) = 325/1728 < 1/2, so a(3) = 0. %e A020004 Gamma(4 + 1/12)/Gamma(1/12) = 12025/20736 = 0.5799..., so a(4) = 1. %e A020004 Gamma(5 + 1/12)/Gamma(1/12) = 589225/248832 = 2.3679631237..., so a(5) = 2. %e A020004 Gamma(6 + 1/12)/Gamma(1/12) = 35942725/2985984 = 12.037145878879458..., so a(6) = 12. %e A020004 Gamma(7 + 1/12)/Gamma(1/12) = 2623818925/35831808 = 73.22597..., so a(7) = 73. %p A020004 Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end; %t A020004 Table[Round[Gamma[n + 1/12]/Gamma[1/12]], {n, 0,50}] (* _G. C. Greubel_, Jan 19 2018 *) %o A020004 (PARI) for(n=0,30, print1(round(gamma(n+1/12)/gamma(1/12)), ", ")) \\ _G. C. Greubel_, Jan 19 2018 %o A020004 (Magma) [Round(Gamma(n +1/12)/Gamma(1/12)): n in [0..30]]; // _G. C. Greubel_, Jan 19 2018 %Y A020004 Cf. A020049, A020094, A021016 (decimal expansion of 1/12), A203140 (decimal expansion of Gamma(1/12)). %K A020004 nonn %O A020004 0,6 %A A020004 _Simon Plouffe_