This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020040 #13 Sep 08 2022 08:44:44 %S A020040 1,0,0,1,2,7,37,229,1647,13507,124269,1267543,14196477,173197024, %T A020040 2286200718,32464050199,493453563029,7993947721071,137495900802424, %U A020040 2502425394604114,48046567576398986,970540665043259525 %N A020040 a(n) = round( Gamma(n+1/5)/Gamma(1/5) ). %C A020040 Gamma(n+1/5)/Gamma(1/5) = 1, 1/5, 6/25, 66/125, 1056/625, 22176/3125, 576576/15625, 17873856/78125, ... - _R. J. Mathar_, Sep 04 2016 %H A020040 G. C. Greubel, <a href="/A020040/b020040.txt">Table of n, a(n) for n = 0..450</a> %p A020040 Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end; %p A020040 seq( round(pochhammer(1/5, n)), n=0..30); # _G. C. Greubel_, Dec 06 2019 %t A020040 Table[Round[Pochhammer[1/5,n]], {n,0,30}] (* _G. C. Greubel_, Dec 06 2019 *) %o A020040 (PARI) x=1/5; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ _G. C. Greubel_, Dec 06 2019 %o A020040 (Magma) [Round(Gamma(n+1/5)/Gamma(1/5)): n in [0..30]]; // _G. C. Greubel_, Dec 06 2019 %o A020040 (Sage) [round(rising_factorial(1/5,n)) for n in (0..30)] # _G. C. Greubel_, Dec 06 2019 %Y A020040 Cf. A008548, A020085, A020130. %K A020040 nonn %O A020040 0,5 %A A020040 _Simon Plouffe_