This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020041 #13 Sep 08 2022 08:44:44 %S A020041 1,1,1,4,14,64,370,2495,19339,169215,1649844,17735823,208395916, %T A020041 2657047924,36534408953,538882532061,8487399879954,142163947989232, %U A020041 2523410076808877,47313938940166438,934450294068287158 %N A020041 a(n) = round( Gamma(n+3/4)/Gamma(3/4) ). %C A020041 Gamma(n+3/4)/Gamma(3/4) = 1, 3/4, 21/16, 231/64, 3465/256, 65835/1024, 1514205/4096, 40883535/16384, 1267389585/65536, ... - _R. J. Mathar_, Sep 04 2016 %H A020041 G. C. Greubel, <a href="/A020041/b020041.txt">Table of n, a(n) for n = 0..445</a> %p A020041 Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end; %p A020041 seq( round(pochhammer(3/4,n)), n=0..30); # _G. C. Greubel_, Dec 06 2019 %t A020041 Table[Round[Pochhammer[3/4,n]], {n,0,30}] (* _G. C. Greubel_, Dec 06 2019 *) %o A020041 (PARI) x=3/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ _G. C. Greubel_, Dec 06 2019 %o A020041 (Magma) [Round(Gamma(n+3/4)/Gamma(3/4)): n in [0..30]]; // _G. C. Greubel_, Dec 06 2019 %o A020041 (Sage) [round(rising_factorial(3/4,n)) for n in (0..30)] # _G. C. Greubel_, Dec 06 2019 %Y A020041 Cf. A008545, A020086, A020131. %K A020041 nonn %O A020041 0,4 %A A020041 _Simon Plouffe_