This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020042 #16 Sep 08 2022 08:44:44 %S A020042 1,0,0,1,2,10,51,319,2310,19061,176310,1807181,20330789,249052162, %T A020042 3299941145,47024161317,717118460090,11653174976468,201017268344078, %U A020042 3668565147279424,70619879085128903,1430052551473860293 %N A020042 a(n) = round( Gamma(n+1/4)/Gamma(1/4) ). %C A020042 Gamma(n+1/4)/Gamma(1/4) = 1, 1/4, 5/16, 45/64, 585/256, 9945/1024, 208845/4096, 5221125/16384, 151412625/65536, ... - _R. J. Mathar_, Sep 04 2016 %H A020042 G. C. Greubel, <a href="/A020042/b020042.txt">Table of n, a(n) for n = 0..450</a> %p A020042 Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end; %p A020042 seq( round(pochhammer(1/4,n)), n=0..30); # _G. C. Greubel_, Dec 06 2019 %t A020042 Table[Round[Pochhammer[1/4,n]], {n,0,30}] (* _G. C. Greubel_, Dec 06 2019 *) %o A020042 (PARI) x=1/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ _G. C. Greubel_, Dec 06 2019 %o A020042 (Magma) [Round(Gamma(n+1/4)/Gamma(1/4)): n in [0..30]]; // _G. C. Greubel_, Dec 06 2019 %o A020042 (Sage) [round(rising_factorial(1/4,n)) for n in (0..30)] # _G. C. Greubel_, Dec 06 2019 %Y A020042 Cf. A007696, A020087, A020132. %K A020042 nonn %O A020042 0,5 %A A020042 _Simon Plouffe_