This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020071 #14 Nov 24 2024 13:59:25 %S A020071 1,0,1,2,9,44,251,1665,12700,109544,1054363,11202616,130230419, %T A020071 1644159040,22401666926,327624378797,5119130918712,85105551523594, %U A020071 1499985345603353,27937227061862467,548268081089050917 %N A020071 a(n) = floor( Gamma(n+5/8)/Gamma(5/8) ). %H A020071 G. C. Greubel, <a href="/A020071/b020071.txt">Table of n, a(n) for n = 0..445</a> %p A020071 Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end; %p A020071 seq(floor(pochhammer(5/8,n)), n = 0..25); # _G. C. Greubel_, Nov 17 2019 %t A020071 Floor[Pochhammer[5/8, Range[0, 25]]] (* _G. C. Greubel_, Nov 17 2019 *) %t A020071 Table[Floor[(Gamma[n+5/8])/Gamma[5/8]],{n,0,20}] (* _Harvey P. Dale_, Nov 24 2024 *) %o A020071 (PARI) vector(26, n, my(x=5/8); gamma(n-1+x)\gamma(x) ) \\ _G. C. Greubel_, Nov 17 2019 %o A020071 (Magma) [Floor(Gamma(n+5/8)/Gamma(5/8)): n in [0..25]]; // _G. C. Greubel_, Nov 17 2019 %o A020071 (Sage) [floor(rising_factorial(5/8, n)) for n in (0..25)] # _G. C. Greubel_, Nov 17 2019 %Y A020071 Cf. A020070, A020072, A020073. %K A020071 nonn %O A020071 0,4 %A A020071 _Simon Plouffe_