A020236 Strong pseudoprimes to base 10.
9, 91, 1729, 4187, 6533, 8149, 8401, 10001, 11111, 19201, 21931, 50851, 79003, 83119, 94139, 100001, 102173, 118301, 118957, 134863, 139231, 148417, 158497, 166499, 188191, 196651, 201917, 216001, 226273, 231337, 237169, 251251, 287809, 302177
Offset: 1
Keywords
Examples
From _Alonso del Arte_, Aug 10 2018: (Start) 9 is a strong pseudoprime to base 10. It's not enough to check that 10^8 = 1 mod 9. Since 8 = 1 * 2^3, we also need to verify that 10 = 1 mod 9 and 10^2 = 1 mod 9 as well. Since these are both equal to 1, we see that 9 is indeed a strong pseudoprime to base 10. 91 is also a strong pseudoprime to base 10. Besides checking that 10^90 = 1 mod 91, since 90 = 45 * 2, we also check that 10^45 = -1 mod 91; the -1 is enough to satisfy the definition of a strong pseudoprime. 99 is a Fermat pseudoprime to base 10 (see A005939) but it is not a strong pseudoprime to base 10. Although 10^98 = 1 mod 99, since 98 = 49 * 2, we have to check 10^49 mod 99, and there we find not -1 nor 1 but 10. Therefore 99 is not in this sequence. (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..203 from R. J. Mathar)
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
strongPseudoprimeQ[b_, n_] := Module[{rems = Table[PowerMod[b, (n - 1)/2^expo, n], {expo, 0, IntegerExponent[n - 1,2]}]}, (rems[[-1]] == 1 || MemberQ[rems, n - 1]) && PowerMod[b, n - 1, n] == 1]; max = 5000; Select[Complement[Range[2, max], Prime[Range[PrimePi[max]]]], strongPseudoprimeQ[10, #] &] (* Alonso del Arte, Aug 10 2018 *)