This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020345 #23 Jul 08 2022 11:52:57 %S A020345 0,1,2,3,4181,5,610,75025,8,987,10946,1134903170,121393,13,144,1597, %T A020345 165580141,17711,1836311903,196418,20365011074,21,225851433717,233, %U A020345 24157817,2584,267914296,27777890035288,28657,2971215073,308061521170129,317811 %N A020345 Smallest Fibonacci number beginning with n. %C A020345 The graph of the indices A020344 is much more interesting. - _T. D. Noe_, Apr 02 2014 %C A020345 a(1382) is the first term with > 1000 digits (1004). - _Michael S. Branicky_, Jul 08 2022 %H A020345 Michael S. Branicky, <a href="/A020345/b020345.txt">Table of n, a(n) for n = 0..1389</a> (terms 1..400 from T. D. Noe) %H A020345 Ron Knott, <a href="https://r-knott.surrey.ac.uk/Fibonacci/fibmaths.html#section8">Every number starts some Fibonacci Number</a>, The Mathematical Magic of the Fibonacci Numbers. %F A020345 a(n) = A000045(A020344(n)). %e A020345 a(4) = 4181 is a Fibonacci number starting with 4. %t A020345 nn = 31; t = tn = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; f = Fibonacci[n]; d = IntegerDigits[f]; i = 1; While[i <= Length[d], k = FromDigits[Take[d, i]]; If[k > nn, Break[]]; If[t[[k]] == 0, t[[k]] = f; tn[[k]] = n; found++]; i++]]; t = Join[{0}, t] (* _T. D. Noe_, Apr 02 2014 *) %o A020345 (Python) %o A020345 def aupton(nn): %o A020345 ans, f, g, k = dict(), 0, 1, 0 %o A020345 while len(ans) < nn+1: %o A020345 sf = str(f) %o A020345 for i in range(1, len(sf)+1): %o A020345 if int(sf[:i]) > nn: %o A020345 break %o A020345 if sf[:i] not in ans: %o A020345 ans[sf[:i]] = f %o A020345 f, g, k = g, f+g, k+1 %o A020345 return [int(ans[str(i)]) for i in range(nn+1)] %o A020345 print(aupton(31)) # _Michael S. Branicky_, Jul 08 2022 %Y A020345 Cf. A000045, A020344, A023183, A023184. %K A020345 nonn,base %O A020345 0,3 %A A020345 _David W. Wilson_