This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020472 #34 Nov 15 2022 13:56:11 %S A020472 89,8999,89899,89989,98899,98999,99989,888989,898889,989999,998989, %T A020472 8888989,8889889,8988989,8989999,8998889,8999899,9888889,9889889, %U A020472 9899999,9989899,9999889,88888999,88898989,88989899,89888989,89889889,89898889,89999999,98888989 %N A020472 Primes that contain digits 8 and 9 only. %C A020472 Or, primes with minimal digit 8. %H A020472 Michael S. Branicky, <a href="/A020472/b020472.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Vincenzo Librandi) %H A020472 <a href="/index/Pri#PrimesWithDigits">Index to entries about primes with digits in a given set</a> %t A020472 Select[Prime[Range[80000]], Min[IntegerDigits[#]] == 8 &] (* _Zak Seidov_, May 07 2005 *) %t A020472 Flatten[Table[Select[FromDigits/@Tuples[{8, 9}, n], PrimeQ], {n, 8}]] (* _Vincenzo Librandi_, Jul 27 2012 *) %o A020472 (PARI) for(nd=1,9, p=vector(nd,i,10^(nd-i))~; forvec(v=vector(nd,i,[8+(i==nd),9]), isprime(v*p) && print1(v*p","))) \\ _M. F. Hasler_, Mar 18 2010 %o A020472 (Python) %o A020472 from sympy import isprime %o A020472 from itertools import count, islice, product %o A020472 def agen(): # generator of terms %o A020472 for d in count(2): %o A020472 for first in product("89", repeat=d-1): %o A020472 t = int("".join(first) + "9") %o A020472 if isprime(t): yield t %o A020472 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Nov 15 2022 %Y A020472 Cf. A020449 (digits 0 & 1), ..., A020471 (digits 7 & 9). - _M. F. Hasler_, Mar 18 2010 %K A020472 nonn,base %O A020472 1,1 %A A020472 _David W. Wilson_ %E A020472 Edited by _N. J. A. Sloane_, Jan 26 2008 at the suggestion of _Lekraj Beedassy_