A020497 Conjecturally, this is the minimal y such that n primes occur infinitely often among (x+1, ..., x+y), that is, pi(x+y) - pi(x) >= n for infinitely many x.
1, 3, 7, 9, 13, 17, 21, 27, 31, 33, 37, 43, 49, 51, 57, 61, 67, 71, 77, 81, 85, 91, 95, 101, 111, 115, 121, 127, 131, 137, 141, 147, 153, 157, 159, 163, 169, 177, 183, 187, 189, 197, 201, 211, 213, 217, 227, 237, 241, 247, 253, 255, 265, 271, 273, 279, 283, 289, 301, 305
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, (2nd edition, Springer, 1994), Section A9.
Links
- T. D. Noe, Table of n, a(n) for n = 1..672 (from Engelsma's data)
- Thomas J. Engelsma, Permissible Patterns.
- T. Forbes, Prime k-tuplets
- Daniel M. Gordon and Gene Rodemich, Dense admissible sets, Proceedings of ANTS III, LNCS 1423 (1998), pp. 216-225.
- D. Hensley and I. Richards, Primes in intervals, Acta Arith. 25 (1974), pp. 375-391.
- H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), pp. 119-134.
- Tomás Oliveira e Silva, Admissible prime constellations
- Ian Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem, Bulletin of the American Mathematical Society 80:3 (1974), pp. 419-438.
- H. Smith, On a generalization of the prime pair problem, Math. Comp., 11 (1957) 249-254.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
Crossrefs
Formula
Prime(floor((n+1)/2)) <= a(n) < prime(n) for large n. See Hensley & Richards and Montgomery & Vaughan. - Charles R Greathouse IV, Jun 18 2013
Extensions
Corrected and extended by David W. Wilson
Comments