This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020500 #57 Aug 25 2024 09:27:13 %S A020500 0,2,3,2,5,1,7,2,3,1,11,1,13,1,1,2,17,1,19,1,1,1,23,1,5,1,3,1,29,1,31, %T A020500 2,1,1,1,1,37,1,1,1,41,1,43,1,1,1,47,1,7,1,1,1,53,1,1,1,1,1,59,1,61,1, %U A020500 1,2,1,1,67,1,1,1,71,1,73,1,1,1,1,1,79,1,3 %N A020500 Cyclotomic polynomials at x=1. %C A020500 Also the greatest common divisor of the prime factors of n. - _Peter Luschny_, Mar 22 2011 %H A020500 T. D. Noe, <a href="/A020500/b020500.txt">Table of n, a(n) for n = 1..10000</a> %H A020500 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/papers/cyclotomic.html">Cyclotomic polynomials and prime numbers</a> %H A020500 Bartlomiej Bzdega, Andres Herrera-Poyatos, Pieter Moree, <a href="https://arxiv.org/abs/1611.06783">Cyclotomic polynomials at roots of unity</a>, arXiv:1611.06783 [math.NT], 2016. See Lemma 19. %H A020500 <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index entries for cyclotomic polynomials, values at X</a> %F A020500 a(1) = 0; for n > 1, a(n) = gcd(lpf(n),gpf(n)), by Gallot's theorem 1.4. - _Thomas Ordowski_, May 04 2013 %F A020500 For n > 2, a(n) = lcm(1,2,...,n)/lcm(1,...,n-1). - _Thomas Ordowski_, Nov 01 2013 %p A020500 with(numtheory,cyclotomic); f := n->subs(x=1,cyclotomic(n,x)); seq(f(i),i=0..64); %p A020500 A020500 := n -> igcd(op(numtheory[factorset](n))): %p A020500 seq(A020500(i), i=1..73); # _Peter Luschny_, Mar 22 2011 %t A020500 Table[ Cyclotomic[n, 1], {n, 1, 73}] (* _Jean-François Alcover_, Jan 10 2013 *) %t A020500 Join[{0},Table[GCD@@FactorInteger[n][[All,1]],{n,2,80}]] (* _Harvey P. Dale_, Jul 18 2019 *) %o A020500 (PARI) a(n) = polcyclo(n, 1); \\ _Michel Marcus_, Oct 23 2015 %o A020500 (PARI) a(n) = if (n==1, 0, if (isprimepower(n,&p), p, 1)); \\ _Michel Marcus_, Nov 23 2016 %Y A020500 Apart from initial zero, same as A014963. %Y A020500 Cf. A007947. %K A020500 nonn,easy,nice %O A020500 1,2 %A A020500 _Simon Plouffe_