This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020654 #53 May 06 2025 21:52:39 %S A020654 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,25,26,27,28,30,31,32,33,35, %T A020654 36,37,38,40,41,42,43,50,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68, %U A020654 75,76,77,78,80,81,82,83,85,86,87,88,90,91,92,93,125,126,127 %N A020654 Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression. %C A020654 This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - _Nathaniel Johnston_, Jun 26-27 2011 %H A020654 Nathaniel Johnston, <a href="/A020654/b020654.txt">Table of n, a(n) for n = 1..10000</a> %H A020654 Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008. %H A020654 J. L. Gerver and L. T. Ramsey, <a href="http://dx.doi.org/10.1090/S0025-5718-1979-0537982-0">Sets of integers with no long arithmetic progressions generated by the greedy algorithm</a>, Math. Comp., 33 (1979), 1353-1359. %H A020654 Samuel S. Wagstaff, Jr., <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0325500-5">On k-free sequences of integers</a>, Math. Comp., 26 (1972), 767-771. %H A020654 <a href="/index/Ar#5-automatic">Index entries for 5-automatic sequences</a>. %F A020654 Sum_{n>=2} 1/a(n) = 7.7794910022243020875287956248411192066951785182667316905881486574421016471305408306837031955619272391023... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Apr 14 2025 %p A020654 seq(`if`(numboccur(4,convert(n,base,5))=0,n,NULL),n=0..127); # _Nathaniel Johnston_, Jun 27 2011 %t A020654 Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ] %t A020654 Select[Range[0, 120], DigitCount[#, 5, 4] == 0 &] (* _Amiram Eldar_, Apr 14 2025 *) %o A020654 (PARI) is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ _Charles R Greathouse IV_, Feb 12 2017 %o A020654 (Python) %o A020654 from sympy.ntheory.factor_ import digits %o A020654 print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # _Indranil Ghosh_, May 23 2017 %o A020654 (Python) %o A020654 from gmpy2 import digits %o A020654 def A020654(n): return int(digits(n-1,4),5) # _Chai Wah Wu_, May 06 2025 %o A020654 (Julia) %o A020654 function a(n) %o A020654 m, r, b = n, 0, 1 %o A020654 while m > 0 %o A020654 m, q = divrem(m, 4) %o A020654 r += b * q %o A020654 b *= 5 %o A020654 end %o A020654 r end; [a(n) for n in 0:66] |> println # _Peter Luschny_, Jan 03 2021 %Y A020654 Cf. A023717. %Y A020654 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first): %Y A020654 3-term AP: A005836 (>=0), A003278 (>0); %Y A020654 4-term AP: A005839 (>=0), A005837 (>0); %Y A020654 5-term AP: A020654 (>=0), A020655 (>0); %Y A020654 6-term AP: A020656 (>=0), A005838 (>0); %Y A020654 7-term AP: A020657 (>=0), A020658 (>0); %Y A020654 8-term AP: A020659 (>=0), A020660 (>0); %Y A020654 9-term AP: A020661 (>=0), A020662 (>0); %Y A020654 10-term AP: A020663 (>=0), A020664 (>0). %K A020654 nonn,easy %O A020654 1,3 %A A020654 _David W. Wilson_ %E A020654 Added "infinite" to definition. - _N. J. A. Sloane_, Sep 28 2019