cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020657 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.

This page as a plain text file.
%I A020657 #49 May 06 2025 15:15:30
%S A020657 0,1,2,3,4,5,7,8,9,10,11,12,14,15,16,17,18,19,21,22,23,24,25,26,28,29,
%T A020657 30,31,32,33,35,36,37,38,39,40,49,50,51,52,53,54,56,57,58,59,60,61,63,
%U A020657 64,65,66,67,68,70,71,72,73,74,75,77,78,79,80,81,82,84,85
%N A020657 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.
%C A020657 Also the set of numbers with no "6" in their base-7 representation; see Gerver-Ramsey, also comments in A020654. - _Nathaniel Johnston_, Jun 27 2011
%C A020657 Up to the offset, identical to A037470. There are lexicographically earlier, but non-monotonic sequences which do not contain a 7-term AP, e.g., starting with 0,0,0,0,0,0,1,0,... - _M. F. Hasler_, Oct 05 2014
%H A020657 Nathaniel Johnston, <a href="/A020657/b020657.txt">Table of n, a(n) for n = 1..10000</a>
%H A020657 J. L. Gerver and L. T. Ramsey, <a href="http://dx.doi.org/10.1090/S0025-5718-1979-0537982-0">Sets of integers with no long arithmetic progressions generated by the greedy algorithm</a>, Math. Comp., 33 (1979), 1353-1359.
%p A020657 seq(`if`(numboccur(6,convert(n,base,7))=0,n,NULL),n=0..85); # _Nathaniel Johnston_, Jun 27 2011
%t A020657 Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] (* _Jean-François Alcover_, Jan 27 2023 *)
%o A020657 (PARI) a(n)=vector(#n=digits(n-1, 6), i, 7^(#n-i))*n~ \\ _M. F. Hasler_, Oct 05 2014
%o A020657 (Python)
%o A020657 from gmpy2 import digits
%o A020657 def A020657(n): return int(digits(n-1,6),7) # _Chai Wah Wu_, May 06 2025
%Y A020657 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
%Y A020657 3-term AP: A005836 (>=0), A003278 (>0);
%Y A020657 4-term AP: A005839 (>=0), A005837 (>0);
%Y A020657 5-term AP: A020654 (>=0), A020655 (>0);
%Y A020657 6-term AP: A020656 (>=0), A005838 (>0);
%Y A020657 7-term AP: A020657 (>=0), A020658 (>0);
%Y A020657 8-term AP: A020659 (>=0), A020660 (>0);
%Y A020657 9-term AP: A020661 (>=0), A020662 (>0);
%Y A020657 10-term AP: A020663 (>=0), A020664 (>0).
%K A020657 nonn,easy
%O A020657 1,3
%A A020657 _David W. Wilson_
%E A020657 Name edited by _M. F. Hasler_, Oct 10 2014. Further edited by _N. J. A. Sloane_, Jan 04 2016