cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020660 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 8.

This page as a plain text file.
%I A020660 #13 Jan 04 2016 20:30:49
%S A020660 1,2,3,4,5,6,7,9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26,27,28,
%T A020660 30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,50,59,60,61,62,
%U A020660 63,64,65,67,69,70,71,72,74,75,76,77,78,79,81,84,85,87,88,89,91,92,93,95,96,97
%N A020660 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 8.
%H A020660 Robert Israel, <a href="/A020660/b020660.txt">Table of n, a(n) for n = 1..10000</a>
%p A020660 Noap:= proc(N,m)
%p A020660 # N terms of earliest increasing seq with no m-term arithmetic progression
%p A020660 local A,forbid,n,c,ds,j;
%p A020660 A:= Vector(N):
%p A020660 A[1..m-1]:= <($1..m-1)>:
%p A020660 forbid:= {m}:
%p A020660 for n from m to N do
%p A020660   c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
%p A020660   A[n]:= c;
%p A020660   ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
%p A020660   for j from m-2 to 2 by -1 do
%p A020660     ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
%p A020660     if ds = {} then break fi;
%p A020660   od;
%p A020660   forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
%p A020660 od:
%p A020660 convert(A,list)
%p A020660 end proc:
%p A020660 Noap(100, 8); # _Robert Israel_, Jan 04 2016
%Y A020660 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
%Y A020660 3-term AP: A005836 (>=0), A003278 (>0);
%Y A020660 4-term AP: A005839 (>=0), A005837 (>0);
%Y A020660 5-term AP: A020654 (>=0), A020655 (>0);
%Y A020660 6-term AP: A020656 (>=0), A005838 (>0);
%Y A020660 7-term AP: A020657 (>=0), A020658 (>0);
%Y A020660 8-term AP: A020659 (>=0), A020660 (>0);
%Y A020660 9-term AP: A020661 (>=0), A020662 (>0);
%Y A020660 10-term AP: A020663 (>=0), A020664 (>0).
%K A020660 nonn
%O A020660 1,2
%A A020660 _David W. Wilson_