This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A020662 #14 Jan 04 2016 20:28:38 %S A020662 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,27,28,29, %T A020662 30,31,32,33,34,37,38,39,40,41,43,44,45,46,47,48,49,50,53,55,56,57,58, %U A020662 59,60,64,65,66,67,68,69,70,71,78,79,80,81,82,83,84,85,87,88,91,92,94,95,96,97 %N A020662 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 9. %H A020662 Robert Israel, <a href="/A020662/b020662.txt">Table of n, a(n) for n = 1..10000</a> %p A020662 Noap:= proc(N,m) %p A020662 # N terms of earliest increasing seq with no m-term arithmetic progression %p A020662 local A,forbid,n,c,ds,j; %p A020662 A:= Vector(N): %p A020662 A[1..m-1]:= <($1..m-1)>: %p A020662 forbid:= {m}: %p A020662 for n from m to N do %p A020662 c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid); %p A020662 A[n]:= c; %p A020662 ds:= convert(map(t -> c-t, A[m-2..n-1]),set); %p A020662 for j from m-2 to 2 by -1 do %p A020662 ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set); %p A020662 if ds = {} then break fi; %p A020662 od; %p A020662 forbid:= select(`>`,forbid,c) union map(`+`,ds,c); %p A020662 od: %p A020662 convert(A,list) %p A020662 end proc: %p A020662 Noap(100,9); # _Robert Israel_, Jan 04 2016 %Y A020662 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first): %Y A020662 3-term AP: A005836 (>=0), A003278 (>0); %Y A020662 4-term AP: A005839 (>=0), A005837 (>0); %Y A020662 5-term AP: A020654 (>=0), A020655 (>0); %Y A020662 6-term AP: A020656 (>=0), A005838 (>0); %Y A020662 7-term AP: A020657 (>=0), A020658 (>0); %Y A020662 8-term AP: A020659 (>=0), A020660 (>0); %Y A020662 9-term AP: A020661 (>=0), A020662 (>0); %Y A020662 10-term AP: A020663 (>=0), A020664 (>0). %K A020662 nonn %O A020662 1,2 %A A020662 _David W. Wilson_