cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020662 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 9.

This page as a plain text file.
%I A020662 #14 Jan 04 2016 20:28:38
%S A020662 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,27,28,29,
%T A020662 30,31,32,33,34,37,38,39,40,41,43,44,45,46,47,48,49,50,53,55,56,57,58,
%U A020662 59,60,64,65,66,67,68,69,70,71,78,79,80,81,82,83,84,85,87,88,91,92,94,95,96,97
%N A020662 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 9.
%H A020662 Robert Israel, <a href="/A020662/b020662.txt">Table of n, a(n) for n = 1..10000</a>
%p A020662 Noap:= proc(N,m)
%p A020662 # N terms of earliest increasing seq with no m-term arithmetic progression
%p A020662 local A,forbid,n,c,ds,j;
%p A020662 A:= Vector(N):
%p A020662 A[1..m-1]:= <($1..m-1)>:
%p A020662 forbid:= {m}:
%p A020662 for n from m to N do
%p A020662   c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
%p A020662   A[n]:= c;
%p A020662   ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
%p A020662   for j from m-2 to 2 by -1 do
%p A020662     ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
%p A020662     if ds = {} then break fi;
%p A020662   od;
%p A020662   forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
%p A020662 od:
%p A020662 convert(A,list)
%p A020662 end proc:
%p A020662 Noap(100,9); # _Robert Israel_, Jan 04 2016
%Y A020662 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
%Y A020662 3-term AP: A005836 (>=0), A003278 (>0);
%Y A020662 4-term AP: A005839 (>=0), A005837 (>0);
%Y A020662 5-term AP: A020654 (>=0), A020655 (>0);
%Y A020662 6-term AP: A020656 (>=0), A005838 (>0);
%Y A020662 7-term AP: A020657 (>=0), A020658 (>0);
%Y A020662 8-term AP: A020659 (>=0), A020660 (>0);
%Y A020662 9-term AP: A020661 (>=0), A020662 (>0);
%Y A020662 10-term AP: A020663 (>=0), A020664 (>0).
%K A020662 nonn
%O A020662 1,2
%A A020662 _David W. Wilson_