cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020664 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 10.

This page as a plain text file.
%I A020664 #13 Jan 04 2016 20:28:04
%S A020664 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,
%T A020664 31,32,33,34,35,36,37,38,39,41,42,43,44,45,49,50,51,52,53,54,55,58,59,
%U A020664 60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,77,78,81,82,83,84,85,88,89,96,97
%N A020664 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 10.
%H A020664 Robert Israel, <a href="/A020664/b020664.txt">Table of n, a(n) for n = 1..10000</a>
%p A020664 Noap:= proc(N,m)
%p A020664 # N terms of earliest increasing seq with no m-term arithmetic progression
%p A020664 local A,forbid,n,c,ds,j;
%p A020664 A:= Vector(N):
%p A020664 A[1..m-1]:= <($1..m-1)>:
%p A020664 forbid:= {m}:
%p A020664 for n from m to N do
%p A020664   c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
%p A020664   A[n]:= c;
%p A020664   ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
%p A020664   for j from m-2 to 2 by -1 do
%p A020664     ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
%p A020664     if ds = {} then break fi;
%p A020664   od;
%p A020664   forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
%p A020664 od:
%p A020664 convert(A,list)
%p A020664 end proc:
%p A020664 Noap(100,10); # _Robert Israel_, Jan 04 2016
%Y A020664 Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
%Y A020664 3-term AP: A005836 (>=0), A003278 (>0);
%Y A020664 4-term AP: A005839 (>=0), A005837 (>0);
%Y A020664 5-term AP: A020654 (>=0), A020655 (>0);
%Y A020664 6-term AP: A020656 (>=0), A005838 (>0);
%Y A020664 7-term AP: A020657 (>=0), A020658 (>0);
%Y A020664 8-term AP: A020659 (>=0), A020660 (>0);
%Y A020664 9-term AP: A020661 (>=0), A020662 (>0);
%Y A020664 10-term AP: A020663 (>=0), A020664 (>0).
%K A020664 nonn
%O A020664 1,2
%A A020664 _David W. Wilson_