cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020702 Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).

This page as a plain text file.
%I A020702 #19 Jun 13 2015 00:48:54
%S A020702 1,1,2,3,4,6,8,10,13,16,21,25,31,37,44,53,62,72,84,96,111,126,143,161,
%T A020702 181,203,226,251,278,306,338,370,405,442,481,523,567,613,662,713,768,
%U A020702 824,884,946,1011,1080,1151,1225,1303,1383,1468,1555,1646
%N A020702 Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).
%C A020702 Rescaled version of Molien series for self-dual Quebbemann codes over GF(4).
%H A020702 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A020702 <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H A020702 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,0,0,-1,0,1,1,-1).
%F A020702 a(n) ~ 1/90*n^3 + 1/15*n^2. - _Ralf Stephan_, Apr 29 2014
%Y A020702 Different from A067996.
%K A020702 nonn
%O A020702 0,3
%A A020702 G. Nebe, E. Rains, _N. J. A. Sloane_, Apr 05 2002