cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020717 Pisot sequences L(6,9), E(6,9).

Original entry on oeis.org

6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Subsequence of A001611, A048577.
See A008776 for definitions of Pisot sequences.
Pairwise sums of A018910.

Programs

  • Mathematica
    Table[Fibonacci[n + 5] + 1, {n, 0, 36}] (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 6, 9) \\ Colin Barker, Jul 27 2016

Formula

a(n) = Fibonacci(n+5)+1 = A001611(n+5).
a(n) = 2*a(n-1) - a(n-3).
a(n) = A020706(n+1). - R. J. Mathar, Oct 25 2008