A020717 Pisot sequences L(6,9), E(6,9).
6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0
References
- Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for Pisot sequences
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Programs
-
Mathematica
Table[Fibonacci[n + 5] + 1, {n, 0, 36}] (* Michael De Vlieger, Jul 27 2016 *)
-
PARI
pisotE(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2)); a } pisotE(50, 6, 9) \\ Colin Barker, Jul 27 2016
Formula
a(n) = Fibonacci(n+5)+1 = A001611(n+5).
a(n) = 2*a(n-1) - a(n-3).
a(n) = A020706(n+1). - R. J. Mathar, Oct 25 2008