cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048684 Multiplicity of the maximum squarefree kernel function applied to the binomial coefficients C(n,k).

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Keywords

Examples

			For n = 8, 9 or 10 the spectra of squarefree maximal divisors are {1,2,14,14,70,14,14,2,1}, {1,3,6,42,42,42,42,6,3,1} and {1,10,15,30,210,42,30,15,10,1}, respectively. The maxima (70,42 and 210) occur 1, 4 or 4 times. So a(8) = 1, a(9) = 4 and a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; a[n_] := Module[{r = rad /@ Table[Binomial[n, k], {k, 0, n}]}, Count[r, Max[r]]]; Array[a, 100] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    a(n) = {my(r = vector(n+1, k, rad(binomial(n,k-1))), rm = vecmax(r)); #select(x -> x==rm, r);} \\ Amiram Eldar, Sep 17 2024

A048685 a(n) is the number of times the maximum value of Omega(binomial(n, k)) occurs in the n-th row of Pascal's triangle, where Omega(n) is the number of prime divisors of n counted with multiplicity (A001222).

Original entry on oeis.org

2, 1, 2, 3, 2, 1, 4, 2, 6, 3, 4, 2, 2, 1, 2, 4, 4, 2, 8, 2, 2, 3, 8, 2, 2, 3, 2, 3, 2, 1, 2, 4, 2, 4, 8, 2, 2, 2, 12, 2, 6, 2, 2, 2, 2, 1, 2, 2, 2, 4, 8, 2, 4, 2, 4, 2, 2, 5, 4, 2, 4, 1, 18, 2, 8, 2, 2, 10, 8, 2, 2, 6, 2, 2, 2, 2, 4, 2, 10, 8, 4, 4, 2, 6, 2, 3, 2, 2, 4, 2, 2, 2, 2, 1, 2, 4, 4, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Keywords

Examples

			For n = 19, the A001222 spectrum for binomial(n,k) is: {0, 1, 3, 3, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 3, 3, 1, 0}. The maximum arises 8 times, so a(19) = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{row = Table[PrimeOmega[Binomial[n, k]], {k, 0, n}]}, Count[row, Max[row]]]; Array[a, 100] (* Amiram Eldar, Aug 13 2024 *)
Showing 1-2 of 2 results.