cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020742 Pisot sequence T(7,9).

Original entry on oeis.org

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A005408, A020735. See A008776 for definitions of Pisot sequences.
Essentially the same as A005818.

Programs

  • Mathematica
    T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[7, 9, 66] (* Michael De Vlieger, Aug 08 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 7, 9) \\ Colin Barker, Aug 08 2016

Formula

a(n) = 2*n + 7.
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: (7 - 5*x)/(1 - x)^2.
E.g.f.: (7 + 2*x)*exp(x).
a(n) = A016825(n+3)/2 = A028560(n+1) - A028560(n). (End)